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Abstract. We present a case study in modeling the North Pacific (NP) index,
which is a time series related to atmospheric pressure variations at sea level. We con-
sider three statistical models, namely, a Gaussian stationary autoregressive process, a
Gaussian stationary fractionally differenced (FD) process, and a ‘signal plus noise’ pro-
cess consisting of a square wave oscillation with a pentadecadal period embedded in
Gaussian white noise. Each model depends upon three parameters, so all three models
are equally simple. Statistically each model fits the NP index equally well. The fact
that this index consists of just a hundred observations makes it unrealistic to expect to
be able to clearly prefer one model over the other. Although the models fit equally well,
their implications for the long term behavior of the NP index can be quite different in
terms of, e.g., generating regimes of characteristic lengths (i.e., stretches of years over
which the NP index is predominantly either above or below its long term average value).
Because we cannot determine a preferred model statistically, we are faced with either
entertaining multiple models when considering what the long term behavior of the NP
index is likely to be or using physical arguments to select one model. The latter approach
would arguably favor the FD process because it has an interpretation as the synthesis
of first order differential equations involving many different damping constants.
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1. Introduction. There has been considerable interest in recent years
in understanding how the climate in the North Pacific (NP) influences
fish and mammals in the region. For example, the dramatic drop in the
abundance of Stellar sea lions in the Gulf of Alaska over the last fifty years
has been hypothesized to be due in part to NP climate variability. One
particular measure of this climate variability is the Aleutian low sea level
pressure field averaged over the months November to March [16, 12]. This
series is known as the NP index and is plotted in Figure 1 (thin curve) for
the years 1900 to 1999. Our goal is to investigate the nature of interdecadal
variability in this climate time series, but the shortness of this series (one
hundred points in all) presents major difficulties in our ability to say with
some degree of confidence what the NP index will look like in the future.
Faced with a lack of data, one approach is to investigate various models.
The idea is to see what models are reasonable fits to the observed series and
then to investigate what each model implies about the future behavior of
the NP index. We cannot expect to identity one ‘true’ model for the index
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Fig. 1. Plot of the NP index (thin curve), a five year running average of the index
(thicker) and a pentadecadal square wave oscillation used as a model for the index
(thickest). There is also a thin horizontal line on the plot. The height of this line
depicts the sample mean (1009.8 millibars) for the index.

based upon the small amount of available data, but we can investigate what
implications the different models have on interesting aspects of the index.

The question then arises as to which models we should consider for the
NP index. There are many viable candidates. In [13], we compared two
purely stochastic models, namely, a ‘short memory’ model specified by a
Gaussian first order autoregressive (AR(1)) process, and a ‘long memory’
model given by a Gaussian fractionally differenced (FD) process. In [14],
we used the matching pursuit algorithm to investigate evidence for a hy-
pothesis by Minobe [11] that the NP index is subject to pentadecadal and
bidecadal oscillations in the form of rapid transitions (or ‘regime shifts’)
that ‘cannot be attributed to a single sinusoidal-wavelike variability.’ This
work leads to us to consider a simple ‘signal plus noise’ model consisting
of a square wave oscillation (SWO) observed in the presence of Gaussian
white noise. Our intent here is to study the relative merits of this model
and the two purely stochastic models.

The remainder of this article is organized as follows. We briefly de-
scribe our three models in §2, after which we discuss their parameter esti-
mation in §3. We assess how well each of the models fits the NP index in
§4. Given the small amount of available data, we cannot hope to defini-
tively discriminate amongst the three models on statistical grounds, a fact
that we quantify in §5. We discuss in §6 the different implications these
three models have for extrapolations and for the notion of regime shifts.
We state our conclusions in §7.

2. Statistical models for the NP index. In the subsections below,
we discuss two Gaussian stationary processes and a ‘signal plus Gaussian
noise’ process as models for the NP index. The stationary processes are
an AR(1) process and an FD process, while the ‘signal plus noise’ process
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consists of an SWO observed in the presence of Gaussian white noise. All
three processes are fully specified by three parameters and hence can be
considered to be ‘equally simple.’ One of the parameters for each process is
related to the overall mean value of the NP index, while a second is critical
in setting its overall variance. The final parameter controls either (i) the
shapes of both the autocovariance sequence (ACVS) and the spectral den-
sity function (SDF) for the stationary processes or (ii) the amplitude of
the SWO. An important distinguishing characteristic of each process is ex-
pressed in their ACVSs. The ACVS for an AR(1) process dies down quickly
(exponentially) to zero, so this process is said to have ‘short memory;’ on
the other hand, for an FD process, the ACVS dies down slowly (hyperboli-
cally) and is said to be associated with ‘long memory.’ For the ‘signal plus
noise’ process, if we force it into the mold of a stationary process by intro-
ducing a random phase for the SWO (i.e., location of first zero crossing),
the resulting ACVS is periodic and hence never dies down to zero.

2.1. Short memory model. For this model we regard the NP in-
dex as a realization of portion X0, X1, . . . , XN−1 of a stationary Gaussian
AR(1) process {Xt}; i.e.,

Xt − µX = φ(Xt−1 − µX) + εt =
∞∑

k=0

φkεt−k,(2.1)

where µX = E{Xt} is the process mean; {εt} is a Gaussian white noise
process with mean zero and variance σ2

ε ; and |φ| < 1. We note that, if
φ = 0, then {Xt} reduces to Gaussian white noise. The ACVS for an
AR(1) process is given by

sX,τ ≡ cov{Xt, Xt+τ} = σ2
ε

φ|τ |

1 − φ2
,(2.2)

where τ ∈ Z (the set of all integers). Its SDF is

SX(f ; θX) =
σ2

ε

1 + φ2 − 2φ cos(2πf)
,(2.3)

where θX ≡ {φ, σ2
ε }, and |f | ≤ 1/2. An AR(1) process is widely used in

the physical sciences as a default model for correlated time series [17]. It
is suggested as a viable model for the NP index by the fact that, when
presented with all possible autoregressive/moving average models of orders
ranging from zero to ten, the default order selection criterion used by the
ITSM software package [5] picked the AR(1) process as the best model [7].
An AR(1) process is related to a discretized first order stochastic differential
equation with a single damping constant that is related to φ. In [17],
a measure of the decorrelation time (or integral time scale) of an AR(1)
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process is given by

τD ≡ 1 + 2
∞∑

τ=1

sX,τ

sX,0
=

1 + φ
1 − φ ;(2.4)

i.e., the subseries Xn�τD�, n ∈ Z, can be regarded as a reasonable approxi-
mation to a white noise process.

2.2. Long memory model. For this model we regard the NP index
as a realization of a portion Y0, Y1, . . . , YN−1 of a stationary Gaussian FD
process {Yt}; i.e,

Yt − µY =
∞∑

k=0

Γ(1 + δ)
Γ(k + 1)Γ(1 + δ − k) (−1)k(Yt−k − µY )(2.5)

=
∞∑

k=0

Γ(1 − δ)
Γ(k + 1)Γ(1 − δ − k) (−1)kεt−k,(2.6)

where µY = E{Yt} is the process mean; {εt} is a Gaussian white noise
process with mean zero and variance σ2

ε ; and |δ| < 1/2. If δ = 0, then
{Yt} reduces to a white noise process. The process exhibits long memory
if δ > 0. The ACVS and SDF for an FD process are given by

sY,τ = σ2
ε

sin(πδ)Γ(1 − 2δ)Γ(τ + δ)
πΓ(τ + 1 − δ)(2.7)

and

SY (f ; θY ) =
σ2

ε

|2 sin(πf)|2δ
,(2.8)

where θY ≡ {δ, σ2
ε}. Given sY,0 (i.e., the process variance), we can compute

sY,1, sY,2, . . . recursively using the simple formula

sY,τ = sY,τ−1
τ + δ − 1
τ − δ .

For large τ , we have sY,τ ∝ |τ |2δ−1 approximately, while, for small f , we
have SY (f) ∝ 1/|f |2δ approximately. An FD model is suggested for the NP
index by the fact that, when presented with all autoregressive/fractionally
differenced models with the autoregressive order ranging from zero to ten,
the ITSM order selection criterion [5] picked the FD process as the best
model [7]. An FD process can be synthesized using an aggregation of first
order differential equations involving many different damping constants [1].
The measure of the decorrelation time given by Equation (2.4) is infinite
for long memory FD processes.
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2.3. Square wave oscillation plus noise model. Recently Mi-
nobe [11] analyzed the NP index and found evidence for ‘regime’ shifts
(see his paper for citations to prior work on this hypothesis). Loosely
speaking, a regime is a stretch of years over which the index is essentially
either above or below the sample mean of the entire record. Consider, for
example, the index from 1901 to 1923 (thin curve in Figure 1), over which
it is essentially greater than its sample mean (thin horizontal line), with
the only exceptions being the years 1905 and 1919. This positive regime
with a duration of 23 years is more clearly seen in a five year running
mean (thicker curve), which lies strictly above the sample mean up until
1924. Continuing on, we find this running mean to be essentially (but not
strictly) below the sample mean from 1924 to 1946, indicating a negative
regime of 23 years. This pattern arguably persists up to the end of the
recorded data, providing evidence for a pentadecadal oscillation [11].

A regime shift is the transition between regimes of different polarities.
Part of the current interest in the notion of regimes is that the shifts occur
rapidly, signaling a change in conditions that can influence the relative
abundances of fish and mammal populations. To quote from Minobe [11],

‘Although the regime shifts in the present century are
characterized by a pentadecadal timescale, rapid transi-
tions from one regime to another cannot be attributed to a
single sinusoidal-wavelike variability. The rapid-transition
nature of 20th century regime shifts suggests that the pen-
tadecadal variability is characterized by a non-sinusoidal
variation such as a rectangular wave . . . .’

In [14], we informally assessed Minobe’s hypothesis using matching
pursuit. The basic idea behind matching pursuit is to construct a ‘dic-
tionary’ of vectors with characteristics that might be useful in describing a
time series. We constructed a dictionary consisting of (i) sinusoidal vectors
from a discrete Fourier transform, (ii) SWOs with periods ranging from
two up to one hundred years in combination with all possible alignments
(i.e., phase shifts) and (iii) wavelet and scaling vectors from a Haar wavelet
transform spanning two up to one hundred years (again with all possible
alignments). When presented with this dictionary, matching pursuit found
the best single approximating vector to be a square wave oscillation with a
pentadecadal period; i.e., given the choice between square wave and sinu-
soidal oscillations, matching pursuit preferentially favored the former over
the latter, in agreement with Minobe’s hypothesis. In addition, the align-
ment of the selected pentadecadal oscillation was such that its regime shifts
are in quite good agreement with those given in Minobe [11].

In view of this result from matching pursuit, we will also consider the
NP index to be a realization of a portion Z0, Z1, . . . , ZN−1 of an SWO
process defined by

Zt = µZ + βDt+1 + et,(2.9)
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where µZ and β are unknown parameters; {et} is a Gaussian white noise
process with mean zero and variance σ2

e ; and

Dt ≡


+0.1, when t = 0, . . . , 24;
−0.1, when t = 25, . . . , 49; and
Dt mod 50, otherwise

(2.10)

(by definition, ‘t mod 50’ is equal to t+50n, where n is the unique integer
such that 0 ≤ t+50n ≤ 49). Note that, if β = 0, then {Zt} becomes a white
noise process. When β 
= 0, an intuitive measure for the decorrelation time
is fifty since the subseries Zj+50k, k ∈ Z, for a fixed j ∈ Z is exactly a white
noise process.

3. Estimation of model parameters. Each of the statistical mod-
els for the NP index described in §2 has three parameters: µX , φ and σ2

ε

for the AR(1) process {Xt}; µY , δ and σ2
ε for the FD process {Yt}; and

µZ , β and σ2
e for the SWO process {Zt}. The parameters µX , µY and µZ

capture the overall level of the index and can be estimated via the sample
mean; i.e.,

µ̂X =
1
N

N−1∑
t=0

Xt, µ̂Y =
1
N

N−1∑
t=0

Yt and µ̂Z =
1
N

N−1∑
t=0

Zt.

For the AR(1) and FD models, the sample mean is a suboptimal estimator,
but is commonly used in time series analysis because there is little practical
loss of efficiency.

After computing the sample mean, we use it to recenter the NP index,
yielding

X̃t ≡ Xt − µ̂X , Ỹt ≡ Yt − µ̂Y and Z̃t ≡ Zt − µ̂Z .

As an approximation, we consider X̃t, Ỹt and Z̃t to be AR(1), FD and SWO
processes with µX = µY = µZ = 0. There are now two parameters left
to estimate for each process. We estimate these using the maximum likeli-
hood (ML) method ([13] has details about this approach for the AR(1) and
FD models). Let φ̂, σ̂2

ε , δ̂, σ̂2
ε , β̂ and σ̂2

e denote the ML estimators. Large
sample theory says that these estimators are all (at least) approximately
normally distributed and unbiased (both statements are exact for β̂, and σ̂2

e

is also exactly unbiased). The variances of φ̂ and δ̂ are approximately given
by, respectively, (1−φ2)/N and 6/π2N , whereas the variance of β̂ is given
exactly by σ2

e (the dependence on N is implicit here because the SWO of
Equation (2.10) is defined to have unit norm over N observations). The
variances of σ̂2

ε , σ̂2
ε and σ̂2

e all have a similar form, namely, 2σ4
ε /N , 2σ4

ε/N
and 2σ4

e/N , respectively (these are approximations for the AR(1) and FD
processes but exact for the SWO process). Monte Carlo experiments indi-
cate that the large sample approximations we have quoted for the AR(1)
and FD processes are in fact very accurate for N ≥ 100 [13].
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Table 1
Autoregressive (AR), fractionally differenced (FD) and square wave oscillator

(SWO) process parameter estimates for the NP index, along with associated 95% con-
fidence intervals (CIs)

model parameter 95% CI σ 95% CI
AR φ̂

.= 0.21 [0.02, 0.40] σ̂ε
.= 2.37 [2.01, 2.67]

FD δ̂
.= 0.17 [0.02, 0.32] σ̂ε

.= 2.35 [2.00, 2.66]
SWO β̂

.= −10.09 [−14.51,−5.67] σ̂e
.= 2.21 [1.88, 2.50]
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Fig. 2. Spectral density functions (thick curves, top row) for the fitted AR, FD
and SWO models (left-hand, middle and right-hand columns, respectively) and the cor-
responding periodogram for the NP index (thin curves, top row), along with theoretical
autocorrelation sequences (ACSs, thick curves, bottom row) for the models and the cor-
responding sample ACS (depicted as deviations from zero in each plot in the bottom
row). The two thin curves above and below the zero line in each lower plot indicate lim-
its within which individual sample ACVS estimates should fall 95% of the time when
the true process is white noise. The error bar in each of the upper plots gives a similar
assessment of the inherent variability in the periodogram.

Table 1 shows the parameter estimates for the three models, along
with associated 95% confidence intervals (CIs) for the unknown parameters
based upon ML theory. Based upon the CIs, we can reject the white noise
hypotheses φ = 0, δ = 0 and β = 0 at the 0.05 level of significance. The
estimated residual standard deviations are remarkably similar for the three
fitted models, with the one for the SWO model being the smallest. The
fitted SWO model µ̂Z + β̂Dt+1 is shown in Figure 1 as the thickest curve.

4. Assessment of fitted models. As a first step in assessing how
well the three fitted models capture the characteristics of the NP index, let
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us compare plots of the theoretical SDFs corresponding to the fitted models
with the periodogram for the index (top row of Figure 2). By definition
the SDFs for the AR(1) and FD processes are given by Equations (2.3)
and (2.8), respectively. With φ set equal to φ̂ and δ set to δ̂, the theoretical
SDFs for the fitted models are given by the solid curves in the upper left-
hand and middle plots. For the SWO process, we can define a theoretical
SDF to be the expected value of the periodogram for Ẑt ≡ β̂Dt+1 + et
conditional on regarding β̂ as fixed. By definition, this periodogram is
given by

ŜẐ(fk) ≡ 1
N

∣∣∣∣∣
N−1∑
t=0

Ẑte
−i2πfkt

∣∣∣∣∣
2

, fk ≡ k/N, k = 1, . . . , N/2,(4.1)

and its expected value is given by

E{ŜẐ(fk)} =
1
N

∣∣∣∣∣
N−1∑
t=0

β̂Dt+1e
−i2πfkt

∣∣∣∣∣
2

+ σ2
e .

With σ2
e set to its ML estimate, the above is plotted as the thick curve in

the upper right-hand plot. The periodogram for the NP index is given by
Equation (4.1) with X̃t substituted for Ẑt and is shown on all three upper
plots as the thin jagged curves. An assessment of the sampling variability
in the periodogram is given by the confidence intervals (CIs) shown in the
left-hand portion of each plot in the top row. These CIs emanate from a
circle. If we move the CI so that the circle is centered on a particular value
of ŜX̃(fk), then we have a 95% CI for the true SDF at frequency fk.

If we take into account the sampling variability inherent in the peri-
odogram, all three theoretical SDFs are viable summaries of the spectral
content in the NP index. While the fitted AR(1) and FD SDFs are broad-
band summaries, the SDF for the SWO model locks onto the largest value
in the periodogram, associated with a period of 1/f2 = 50 years. There
are additional peaks in the SWO SDF visible at certain harmonics of f2.
The most prominent is the second harmonic, i.e., 3f2 = f6, which is as-
sociated with a period of 1/f6

.= 16.7 years. The fact that there appears
to be some spectral content surrounding this second harmonic in the pe-
riodogram lends some additional (but statistically questionable) support
for Minobe’s hypothesis that a pure sinusoidal oscillation is inadequate to
describe the NP index. Note that the background level from which these
harmonics arise is determined by the variance σ2

e of the white noise process
{et} in the model.

Let us now compare plots of the theoretical autocorrelation sequences
(ACSs) with the sample ACS for the NP index (bottom row of Figure 2).
The ACSs for the AR(1) and FD processes are given by, respectively,
ρX,τ ≡ sX,τ/sX,0 and ρY,τ ≡ sY,τ/sY,0, where sX,τ and sY,τ are given
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in Equations (2.2) and (2.7). The inverse Fourier transform of E{Ŝ(f)},
|f | ≤ 1/2, can be used to form a theoretical ACVS for the SWO process,
from which the corresponding ACS follows. The theoretical ACSs for the
fitted AR(1), FD and SWO models are the solid curves in, respectively, the
left-hand, middle and right-hand plots. Letting X̃t stand for recentered NP
index, the sample ACS is given by

ρ̂X̃,τ ≡
∑N−τ−1

t=0 X̃tX̃t+τ∑N−1
t=0 X̃2

t

, τ = 0, 1, . . . , N − 1.

The sample ACS is shown in each plot as deviations from the zero line.
An assessment of the sampling variability in the sample ACS is given by
the upper and lower thin curves in each plot, which depict 95% confidence
intervals (CIs) under the assumption that the NP index is a realization of
a white noise process (see Corollary 6.3.6.2 of [8] for details).

Each model captures certain aspects of the sample ACS for the NP
index. The AR(1) ACS captures ρ̂X̃,1 almost perfectly, but then damps
down to zero very quickly. The FD ACS also matches ρ̂X̃,1 very well, but
then decays to zero slowly and hence visually captures the sample ACS a
bit better. The SWO ACS underestimates ρ̂X̃,1 somewhat and, like the
FD ACS, has much larger values than the AR(1) ACS for lags below about
τ = 10. When we take into account the sampling variability in the sample
ACS, however, all three models seem qualitatively reasonable.

Let us now look at three test statistics that give us quantitative as-
sessments of the fitted models. The first statistic T1 compares the peri-
odogram ŜX̃(fk) for the NP index to the fitted S(fk; θ̂) from a particular
model [10, 1]:

T1 ≡ NA

4πB2
, where A ≡

�N−1
2 �∑

k=1

(
ŜX̃(fk)

S(fk; θ̂)

)2

and B ≡
�N−1

2 �∑
k=1

ŜX̃(fk)

S(fk; θ̂)
.

Here S(fk; θ̂) is taken to be either SX(fk; θ̂X) of Equation (2.3) for the
AR(1) model or SY (fk; θ̂Y ) of Equation (2.8) for the FD model, where
θ̂X ≡ {φ̂, σ̂2

ε } and θ̂Y ≡ {δ̂, σ̂2
ε} (the theory behind T1 developed in [10]

does not extend to the SDF we defined for the SWO model). Under the
null hypothesis that the model corresponding to S(fk; θ̂) is correct, T1 is
asymptotically normal with mean 1/π and variance 2/(π2N). We reject
the null hypothesis at a level of significance of α when

√
N/2(πT1 − 1)

exceeds Q1(1−α), which is the upper (1−α)× 100% percentage point for
the standard normal distribution.

The other two test statistics make use of residuals from each model.
For the AR(1), FD and SWO models, we denote the residuals as, respec-
tively, ε̂t, ε̂t and êt This notation emphasizes the fact that the residuals
can be regarded as estimates of the white noise processes εt, εt and et
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involved in each model (see Equations (2.1), (2.6) and (2.9)). There are
details in [13] about how to compute εt and εt for the AR(1) and FD mod-
els (sometimes called the observed innovations). For the SWO model, we
have

êt ≡ Z̃t − β̂Dt+1.

If a particular model is adequate for the NP index, then the residuals
from the fitted model should resemble a sample from a white noise process.
The cumulative periodogram test statistic assesses this resemblance by de-
termining if the periodogram for the residuals is consistent with the white
noise assumption [2, 4]. This test statistic is defined as

T2 = max

{
max

l

(
l

N−1
2 � − 1

− Pl

)
,max

l

(
Pl −

l − 1
N−1

2 � − 1

)}
,

where Pl is the normalized cumulative periodogram for, say, ε̂t:

Pl ≡
∑l

k=1 Ŝε̂(fk)∑�N−1
2 �

k=1 Ŝε̂(fk)

(analogous expressions hold for ε̂t and êt). We reject that null hypothesis
of white noise at the α level of significance if T2 exceeds

Q2(1 − α) ≡ C(1 − α)
(M − 1)1/2 + 0.12 + 0.11

(M−1)1/2

,

where C(0.9) = 1.224, C(0.95) = 1.358 and C(0.99) = 1.628 [15].
The last test statistic determines if the residuals are consistent with the

white noise hypothesis by examining their sample ACS. Given a positive
integer K (taken to be small compared the sample size N), the Box–Pierce
portmanteau test statistic [3] is defined for, e.g., the AR(1) residuals ε̂ as

T3 = N

K∑
τ=1

ρ̂2ε̂,τ ,

where ρε̂t,τ is the sample ACS for ε̂t (similar expressions hold for ε̂t and
êt). We reject the null hypothesis of white noise at a level of significance
α if T3 exceeds Q3(1 − α), which is the (1 − α) × 100% percentage point
for the chi-square distribution with K − 1 degrees of freedom. In keeping
with recommendations in the literature, we set K = N/20 = 5, but we also
looked at K = 10 and obtained virtually the same results. (We note that
there is a variation on T3 known as the Ljung–Box–Pierce portmanteau
test statistic [9], which takes the form

T4 = N(N + 2)
K∑

τ=1

ρ̂2ε̂t,τ

N − τ .
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Table 2
Model goodness of fit tests for the NP index. In the column reporting the result of

using an α = .05 level test, ‘accept’ should be interpreted as shorthand for ‘fail to reject
the null hypothesis.’

α = .05
j model Tj Qj(0.90) Qj(0.95) Qj(0.99) test α̂
1 AR 0.30 0.38 0.39 0.42 accept 0.67

FD 0.28 " " " accept 0.78
WN 0.39 " " " reject 0.05

2 AR 0.10 0.17 0.19 0.23 accept � 0.1
FD 0.07 " " " accept � 0.1

SWO 0.10 " " " accept � 0.1
WN 0.21 " " " reject ≈ 0.03

3 AR 4.65 7.74 9.45 13.31 accept 0.32
FD 3.12 " " " accept 0.54

SWO 2.83 " " " accept 0.59
WN 12.63 " " " reject 0.01

The results that we got using T3 and T4 were virtually identical.)
For all three test statistics Tj , we reject the ‘model is adequate’ hy-

pothesis when Tj is ‘too big’ as quantified by a percentage point from a
distribution under the null hypothesis. Table 2 shows the results of these
goodness of fit tests for the AR(1), FD and SWO models, along with an
additional model that regards the NP index as a realization of a white noise
process. This model is denoted as ‘WN’ in the table and has ‘residuals’ that
are taken to be the NP index itself. At the 0.05 level of significance, all the
test statistics reject the hypothesis that the NP index is white noise, but
they all fail to reject the adequacy of the AR(1), FD and SWO models; i.e.,
statistically, all three models are viable. The table also gives an indication
of the observed level of significant α̂ (i.e., the smallest α for which we would
end up rejecting the null hypothesis). For all three test statistics and for
all three models, α̂ is so large that we cannot reject the null hypothesis at
any reasonable level of significance.

Finally, let us comment upon the Gaussian assumption that we have
made for each model. Quantile-quantile plots [6] of the residuals from the
three models indicate some possible departures from Gaussianity. These
departures are not severe, but are of concern since it is unclear how they
impact the analysis presented here. This topic is certainly appropriate for
future research.

5. Model discrimination. The fact that the AR(1), FD and SWO
models are viable for the NP index from a statistical point of view raises
the question as to whether or not we could reasonably hope to distinguish
amongst these models given the fact that we only have one hundred values
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for the NP index. To address this question, we consider the following
experiment. For the sake of argument, let us assume that the fitted FD
model is in fact exactly correct for the NP index. Using procedures outlined
in [13], we can generate simulated time series of a desired length N ′ ≥ N
from this fitted model. We can then fit an AR(1) model to each simulated
FD series and evaluate the fitted AR(1) model using each of our three
test statistics Tj . By repeating the above a large number of times (where
‘large’ is here taken to be 2500), we can estimate the probability that Tj will
(correctly) reject the null hypothesis that the AR(1) model is the correct
one. This experiment will tell us how much power Tj has in being able
to say that the AR(1) model is incorrect. We can also try to fit an SWO
model to the same simulated FD series to get an idea as to how much power
each test statistic has in this case. We can repeat the above for a variety
of sample sizes N ′. We can also repeat all of the above by generating
simulation from either the fitted AR(1) model or the fitted SWO model
and then fitting the other two models to the simulated time series.

Figure 3 shows plots of the estimated probabilities versus sample size
N ′ that, using a level of significance α = 0.05, the three test statistics Tj

will reject a fitted model A when the true model is B. For completeness,
we also estimated these probabilities when A and B were the same model
– theoretically these probabilities should be close to α = 0.05. From this
figure, we can see that, at best, we have only a 30% chance of rejecting
the null hypothesis when we have only one hundred observations. The best
scenario is when we use the T1 test statistic on an AR(1) fit to a time series
generated by an SWO process. If the SWO model is indeed correct for the
NP index, we should have a reasonable chance of rejecting the AR(1) and
FD models by the end of the current century. We would need two to three
hundred years worth of data in order to have a 50% chance of rejecting
the SWO model when either of the other two models is correct. The test
statistics are less successful at discriminating between the AR(1) and FD
models, where we would need about five hundred years of the NP index in
order to have even a 50% chance of correctly rejecting the null hypothesis.
Finally, it is of interest to note that no one test statistic performs uniformly
better than the other two, which emphasizes the need to use them all.

6. Model implications. We have seen that, based upon our three
test statistics Tj , there is no statistical reason to prefer either an AR(1),
FD or SWO model for the NP index. In addition, all three models depend
on just three parameters and hence can be regarded as equally simple, so
the principle of parsimony would not prefer any of the models (this ignores
the fact that the SWO model was picked out by matching pursuit rather
than a priori). Even though all three models seem to match the NP index
equally well, the models can have implications that are quite different and
potentially important, as the following demonstrates.

As a starting point for our discussion, the left-hand plots in the bottom
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Fig. 3. Probability (as a function of sample size) of rejecting the null hypothesis at
a 0.05 level of significance that a fitted model A is adequate for a realization of a process
B when using the test statistics T1, T2 and T3. For the plots in the left- to right-hand
columns, the fitted models A is, respectively, an FD, AR(1) and SWO model. The same
ordering is used for the process B for the plots in the top to bottom rows.

three rows of Figure 4 show simulated series from each of the three models.
From the second down to fourth rows, the series are from, respectively,
the AR(1), FD and SWO models. For comparison, the top row shows the
recentered NP index itself. Each simulated series is a thousand years long,
and the three series are visually rather similar. The right-hand plots show
the periodograms corresponding to each series. With the passage of time,
the square wave oscillation in the SWO model determines the dominant
feature in the periodogram, but note that there is also considerable power
at low frequencies in the simulated AR(1) and FD processes. The periodic
nature of the SWO and the low frequency power in the other two models
can all contribute to the generation of regimes. We thus pose the following
two questions. First, how well do these three models support the notion
of regimes? Second, are there any differences in the regimes generated by
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periodogram (right-hand) with thousand year simulations of this index and their peri-
odograms using the fitted AR(1) model (second row), FD model (third row) and the
SWO model (bottom row).

these models? Answers to these questions are important in understanding
the implications of using any one of these models to say something about
expected future patterns of the NP index.

To address these questions, we consider the following computer exper-
iment. For the sake of argument, suppose that the NP index is actually
a realization of an FD process. To account for the fact that our param-
eter estimate δ̂ is not perfect but is subject to sampling error, we start
by generating a deviate δ̃ from the presumed distribution for δ̂, namely,
a Gaussian distribution with mean δ̂ and variance 6/(π2N) = 6/(π2100).
We next create a simulated series of length 1024 from an FD process with



MODELING NORTH PACIFIC CLIMATE TIME SERIES 15

10-3

10-2

10-1

100 

P
r(

X
 ≥

 r
un

 le
ng

th
)

0 25 50 75

run length

0 25 50 75

run length

Fig. 5. Probability of observing a run that is greater than or equal to a specified
run length. The thin, thick and dotted curves correspond to the AR, FD and SWO
models. The left-hand plot is for processes without smoothing, whereas the right-hand
plot is for processes subjected to a five year running average.

zero mean and parameter δ̃ (the value we use for σ2
ε doesn’t matter). We

then tabulate the sizes of the observed regimes in the series, where the size
of a regime is taken to be the number of contiguous values that are either
entirely above or entirely below zero. We also do the same for a five year
running average of the simulated series. If we repeat the above procedure
a thousand times and if we do the same for the fitted AR(1) and SWO
models (making use of the large sample distributions for φ̂ and β̂), we can
empirically determine the probability that a regime has a size greater than
or equal to a specified run length.

The results of this experiment are shown in Figure 5. The left- and
right-hand plots show the estimated probabilities for, respectively, the orig-
inal and the five year averaged series. The AR(1), FD and SWO models
are indicated by the thin, thick and dotted curves. The more interesting of
the two plots is the right-hand one, for which a regime is defined in terms of
run lengths of five year running averages. We see that intermediate regime
sizes are most likely to occur under the SWO model and that quite large
regime sizes are most likely under the FD model. The AR(1) model is the
least supportive of the idea of extensive regimes. For example, in compari-
son to the AR(1) model, a regime whose size is greater than or equal to 23
years (i.e., the ‘typical’ size indicated by our inspection of Figure 1) is four
times more likely under the FD model and is eight times more likely under
the SWO model. Thus, even though all three models are viable from a sta-
tistical point of view, these models can lead to quite different statements
about what the NP index will look like in the long term.

7. Conclusions. We have shown that, from a statistical point of view,
the AR(1), FD and SWO models are all adequate descriptions of the NP
index despite the fact that these models are quite different from one an-
other. Our inability to identify a best model is directly related to the
fact that we only have one hundred observations of the index. We would
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need several hundred more observations before we would have a reasonable
chance of selecting a single best model. All three models include a white
noise process as a special case, and one of the parameters in each of the
models can be used to test the hypothesis of white noise. In all three cases,
we can reject the white noise hypothesis. In terms of their ACSs, the ACS
for the AR(1) model has the most rapid decay toward zero. The one for
the FD model has a long tail of small positive correlations, while the SWO
model has an oscillating ACS. The FD model is more supportive of the no-
tion of extensive regimes than the other two models, but the SWO model
supports regimes with sizes dictated by the half-period of its oscillation (25
years). In the absence of a viable physical explanation for a pentadecadal
oscillation in the NP index, loose physical considerations might favor the
FD model as the best single choice because this model corresponds to an
aggregation of first order differential equations, each presumably associated
with geophysical phenomena with different time scales. In lieu of picking a
single best model, another strategy would be to consider the implications
of all three statistically feasible models in any forecasts about the future
behavior of the NP index.
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