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Abstract The wavelet variance provides a scale-based decomposition of the
process variance for a time series or a random �eld and has been used to
analyze various multiscale processes. Examples of such processes include at-
mospheric pressure, deviations in time as kept by atomic clocks, soil properties
in agricultural plots, snow �elds in the polar regions and brightness tempera-
ture maps of South Paci�c clouds. In practice, data collected in the form of a
time series or a random �eld often su�er from contamination that is unrelated
to the process of interest. This paper introduces a scale-based contamination
model and describes robust estimation of the wavelet variance that can guard
against such contamination. A new M -estimation procedure that works for
both time series and random �elds is proposed, and its large sample theory
is deduced. As an example, the robust procedure is applied to cloud data
obtained from a satellite.
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1 Introduction

Wavelets decompose a stochastic process (e.g., a time series or a random �eld)
into sub-processes, each one of which is associated with a particular scale. A
wavelet variance is the variance of a sub-process at a given scale and quanti�es
the amount of variation present at that particular scale. Wavelet variances
at di�erent scales enable us to perform an analysis of variance; see Percival
and Walden (2000) and the references therein. This variance is of interest
in numerous geophysical and related applications, where the overall observed
process is an ensemble of sub-processes that operate at di�erent scales. In
addition, the wavelet variance serves as an exploratory tool to study power
law processes (Stoev and Taqqu, 2003), detect inhomogeneity (Whitcher et al.,
2002), estimate spectral densities indirectly (Tsakiroglou and Walden, 2002),
and handle processes that are locally stationary with time- and space-varying
spectra (Nason et al., 2000). Applications include the analysis of textures
(Unser, 1995), electroencephalographic sleep state patterns of infants (Chiann
and Morettin, 1998), the El Ni~no{Southern Oscillation (Torrence and Compo,
1998), soil variations (Lark and Webster, 2001), solar coronal activity (Ryb�ak
and Dorotovi�c, 2002), the relationship between rainfall and runo� (Labat et
al., 2001), ocean surface waves (Massel, 2001), surface albedo and temperature
in desert grassland (Pelgrum et al., 2000), heart rate variability (Pichot et al.,
1999) and the stability of the time kept by atomic clocks (Greenhall et al.,
1999).
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Fig. 1 Simulated ocean shear data. The top plot (a) is of the original simulated series,
while the bottom plot (b) shows the series after contamination.
.
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In practice, however, data collected in the form of a time series or random
�eld often su�er from contamination, which can occur in various ways. For
example, the satellite cloud data we consider in Sect. 8 can be contaminated
in at least three ways: at the satellite itself, during transmission of the signal
through the atmosphere, and due to the presence of aberrant cloud types in
a region where a single cloud type is dominant. A moderate amount of con-
tamination often has a very adverse e�ect on conventional estimates of the
wavelet variance. In classical statistics, it is common to handle contamination
via removing questionable data points and then applying conventional meth-
ods; however, locating contamination in a time series or in a random �eld is
often complicated because of dependence in the data. A better approach is
to consider a contamination model, and then derive a robust procedure that
protects against that model. In such situations, one hopes to measure robust-
ness via in
uence functions and to form estimates that reduce the e�ect of
bias in an optimum way. Several contamination models have been suggested
in the time series literature. These include pure replacement models, additive
outliers, level shift models and innovation outliers that hide themselves in the
original time series. Chapter 8 of Maronna, Martin and Yohai (2006) provides
an excellent account of the theory and methods of robust time series statistics
based on these types of contamination models. However, robust nonparamet-
ric estimates of second-order statistics based on these contaminated models
still present di�cult problems. For example, Robinson (1986) observes that,
under both pure replacement and additive outlier models, autocovariances of
the unobserved uncontaminated process are not distinguishable from those
of the observed contaminated process. Robinson's critique extends to wavelet
variances, making the estimation and the inference of wavelet variances for
contaminated data a di�cult problem. Moreover contamination can be quite
complex when a time series or random �eld is multiscale in nature. Di�erent
contamination processes can act on di�erent scales independently, but contam-
ination from one scale can leak into another and be hard to detect. A practical
approach is to use the median of the squared wavelet coe�cients rather than
their mean to estimate the wavelet variance. Stoev et al. (2006) touch on the
usefulness of median-type estimators to guard against contamination. In this
paper, we develop a full M -estimation theory for the wavelet variance and
derive its large sample theory when the underlying process is Gaussian. Our
approach treats the wavelet variance as a scale parameter and o�ers protection
mostly against scale-based multiplicative contamination (i.e., additive on the
log of squared wavelet coe�cients) that acts independently at di�erent scales.
We will return to the discussion on robustness in Sect. 9.

To illustrate our proposed methodology, let us consider the following ex-
ample motivated by vertical shear measurements in the ocean (see Sect. 7 for
details). Such series are subject to bursts of turbulence isolated in a select
number of scales, but burst-free segments are well modeled by a stationary
process. Fig. 1a shows a simulated Gaussian series of length 4096 from this
stationary process. We compute its wavelet coe�cients for scales �j = 2j�1,
j = 1; : : : ; 9, and, following Percival (1995), form 95% con�dence intervals
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Fig. 2 Con�dence intervals (CIs) for the wavelet variance based upon mean- and median-
type estimators of the wavelet variance using simulated ocean shear data (Fig. 1a) and
a contaminated version thereof (Fig. 1b). CIs for nine scales �j = 2j�1, j = 1; : : : ; 9, are
displayed. For each scale there are four lines jittered about the level j. From left to right, these
show 95% CIs based upon the mean-type estimator with uncontaminated data; median-type
with uncontaminated; mean-type with contaminated; and median-type with contaminated.

(CIs) for the wavelet variance based upon averaging squared coe�cients for a
given scale (left-most lines in Fig. 2 in the set of four lines jittered about each
of the nine scales). We form an alternative estimator by taking the median of
the squared coe�cients and correcting for bias as dictated by our theory (see
equation (15)). The second-from-left lines in each group of four show the 95%
CIs based upon the robust median-based estimates. We see good agreement
with the mean-type estimates at all scales. Next we contaminate the time series
by introducing scale-based multiplicative noise, which is intended to simulate
bursts of turbulence focused around scale �3 (Fig. 1b). The second-from-right
lines in Fig. 2 show the CIs for the wavelet variance based upon this contam-
inated data and the usual mean-type estimator. Outliers signi�cantly change
the wavelet variance estimates at small scales. Any inferences that we might
want to draw about the turbulent-free vertical shear process at small scales
would be materially in
uenced by the contamination. Finally the right-most
lines in Fig. 2 show CIs based upon our robust median-based estimator and the
contaminated series. The CIs are close to those for the uncontaminated series,
making it possible to draw inferences about the turbulent-free vertical shear
process from the contaminated data. Our robust procedure thus works well
when observed data are subjected to scale-based multiplicative contamination
of an underlying Gaussian process.

The remainder of the paper is organized as follows. Sect. 2 gives some
background on the theoretical wavelet variance and its estimation for both
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time series and random �elds. Sect. 3 presents our theory for M -estimation of
the wavelet variance, with proof of the main result (Theorem 1) deferred to
the appendix. Due to use of a logarithmic transform, our raw M -estimators
are biased, so Sect. 4 discusses how to correct for this bias. Sect. 5 considers
how to construct CIs for the wavelet variance based upon our M -estimators.
Sect. 6 and 7 discuss computer experiments that investigate the e�cacy of
our proposed methodology, and Sect. 8 considers a substantive application to
two-dimensional cloud data. Sect. 9 concludes the paper with some discussion.

2 Wavelet analysis of variance

2.1 Daubechies wavelet �lter

Let fh1;0; : : : ; h1;L�1g be a unit level Daubechies wavelet �lter (Daubechies,
1992, Sect. 6.2) of width L = L1, which by de�nition satis�es three conditions:X

h21;l =
1
2
;

X
h1;lh1;l+2n = 0;

for all nonzero integers n, where h1;l = 0 for l < 0 and l � L; and
P
ilh1;l = 0

for i = 1; : : : ; L=2. Let H1(f) denote the transfer function (Fourier transform)
of the �lter fh1;lg. The jth level wavelet �lter fhj;lg is de�ned as the inverse
discrete Fourier transform (DFT) of

Hj(f) = H1(2
j�1f)

j�2Y
l=0

ei2�2
lf(L�1)H1( 12 � 2lf): (1)

The width of this �lter is given by Lj = (2j � 1)(L� 1) + 1.

2.2 Wavelet variance for time series

Let fXt; t 2 Zg be an intrinsically stationary process of order d, where d is a
nonnegative integer; i.e., its dth order increments (1 � B)dXt are stationary,
where BXt = Xt�1. Let SX denote the spectral density function (SDF) of the
process. The jth level wavelet coe�cient process is then given by

Wj;t =

Lj�1X
l=0

hj;lXt�l;

which corresponds to the changes on scale �j = 2j�1. The jth level wavelet
variance is de�ned as

�2j = var fWj;tg:

When L = 2, we have the Haar wavelet variance, for which the wavelet coef-
�cients at level j are proportional to the di�erence of simple averages of 2j�1
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consecutive observations. For L > 2, the wavelet coe�cients are contrasts be-
tween localized weighted averages. When Xt is a stationary process with SDF
SX , Percival (1995) obtained the wavelet variance decomposition

var fXtg =

1X
j=1

�2j (2)

as an alternative to the classical decomposition

var fXtg =

Z 1=2

�1=2

SX(f) df:

The decomposition of var fXtg o�ered by the wavelet variance complements
that of the SDF by focusing directly on scale-based variations, which are often
more interpretable and of more interest in the geosciences than frequency-
based variations.

Given an observed time series that can be regarded as a realization of X0,
: : :, XN�1 and assuming the su�cient condition L > 2d to ensure that fWj;tg
has zero mean, the usual unbiased estimator of �2j is given by

�̂2j =
1

Mj

N�1X
t=Lj�1

W 2
j;t; (3)

whereMj = N�Lj+1 > 0. See Percival (1995) and Percival andWalden (2000)
for large sample properties of this estimator and construction of CIs.

2.3 Wavelet variance for random �elds

Let Xu;v, u; v = 0;�1;�2; : : : be a stationary Gaussian random �eld on the
two-dimensional integer lattice Z2 with SDF SX(f; f

0). Its wavelet transform
is de�ned by �ltering the random �eld using the four possible combinations of
wavelet and scaling �lters along its rows and columns, yielding four types of
coe�cients, of which the so-called wavelet-wavelet coe�cients are of primary
interest to us:

Wj;j0;u;v =

Lj�1X
l=0

Lj0�1X
l0=0

hj;lhj0;l0Xu�l;v�l0 :

The wavelet variance is de�ned in terms the variance of these coe�cients:

�2j;j0 = var fWj;j0;u;vg:

IfXu;v is intrinsically stationary of order d, then SX(f; f
0) has a pole of order d

at the origin and �2j;j0 is well de�ned if L � d. The wavelet variance decomposes
the process variance since

var fXu;vg =

1X
j=1

1X
j0=1

�2j;j0 : (4)
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This generalizes the result for time series stated in (2) and provides a scale-
based analysis of variance for random �elds. When we have a realization of
an intrinsically stationary random �eld Xu;v on a �nite array f(u; v) : u =
0; : : : ; N � 1; v = 0; : : : ;M � 1g, we can then estimate the wavelet variance
by the unbiased estimator

�̂2j;j0 =
1

NjMj0

N�1X
u=Lj�1

M�1X
v=Lj0�1

W 2
j;j0;u;v; (5)

where Nj = N � Lj + 1 and Mj0 = M � Lj0 + 1. See Mondal and Percival
(2009) for statistical inference based on this type of estimator.

3M-estimation of wavelet variance

Let fYig; i 2 L, be a zero-mean Gaussian process, and suppose we are inter-
ested in estimating var fYig = EY 2

i = �2. Here the index i represents either
time t or spatial location (u; v), and hence L is an integer lattice, either Z
or Z2. Typically fYig is either the wavelet coe�cient process fWj;tg or the
wavelet-wavelet coe�cients fWj;j0;u;vg for any �xed scale (or scale pair). In
practice the simple mean-type estimators (3) and (5) are vulnerable to data
contamination, so we are interested in developing robust estimators that guard
against such contamination, yet still work well when Gaussianity holds. Un-
der our assumptions, �2 is a scale parameter. A logarithmic transformation
converts it to a location parameter and allows use of M -estimation theory to
formulate a robust estimator. Accordingly, let

Qi = log Y 2
i :

Then fQig is a stationary process and, using Bartlett and Kendall (1946), we
obtain

EQi = log �2 +  ( 1
2
) + log 2; var fQig =  0( 1

2
) =

�2

2
;

where  and  0 are the di- and tri-gamma functions. Let � = log �2 +  ( 1
2
) +

log 2. Then Qi can be written as

Qi = �+ �i;

where E �i = 0 and var f�ig = �2=2.

Assumption 1 Let '(x), x 2 R, be a nondecreasing real-valued function of
bounded variation with '(�1) < 0 and '(1) > 0 such that

�(x) = E'(Qi � x)

is well de�ned, strictly decreasing on R and has a solution point �0 such that

�(�0) = 0:

Moreover we assume ' is such that �(x) is di�erentiable and �0(x) is continuous
around �0.



8 Mondal and Percival

The relationship between the solution point �0 and the location parameter �
is discussed in Sect. 4.

Because of the Gaussian assumption on fYig, the marginal distribution
FQ of Qi is that of the logarithm of a squared Gaussian random variable and
hence is in�nitely di�erentiable. Integration by parts allows us to write

�(x) = �

Z 1

�1

FQ(x+ y) d'(y);

and the �rst derivative of � satis�es the relation

�0(x) = �

Z
fQ(y + x) d'(y):

Given the form of FQ and the fact that ' is of bounded variation, it follows
that �0(x) is bounded as well.

The corresponding M -estimator TN of the solution point �0 based on ob-
servations fQi; i 2 Ig is de�ned by

TN = argmin

(���X
i2I

'(Qi � x)
��� : x 2 R

)
:

The index set I is equal to f0; : : : ; N �1g for time series and is f(u; v) : u; v =
0; : : : ; N � 1g for a random �eld (thus, when Yi represents Wj;t, N stands for
Mj). In what follows, let B be the size of I.

Assumption 1 holds for various choices of ', including

'I(x) = sign (x); 'II(x) = 2Pr(�i � x)�1; 'III(x) = p sign (x)1jxj>p+x1jxj�p

for p > 0 and

'IV (x) =

8><
>:
a0 if x � a,

ex � 1 if a < x � b and

b0 if x > b

(see equation (3.9) of Thall, 1979, for another choice). To better understand
M -estimation, consider an independent and identically distributed (IID) sam-
ple. Then TN corresponding to 'I is the same as the maximum likelihood
estimator (MLE) for the location parameter when the observations arise from
a double exponential distribution. The function 'II corresponds to an MLE
under logistic errors, whereas 'III corresponds to an MLE under a distribu-
tion whose central part behaves like a Gaussian but whose tail is like a double
exponential. Similarly, for 'IV , the estimator is an MLE under a distribution
whose central part behaves like the log of a chi-square distribution. The choice
'I gives rise to median-type estimators, which, when compared to mean-type
estimators, are less sensitive to data contamination. The choice 'III yields Hu-
ber's ' function for a location parameter, which maps extreme values of log Y 2

i

to either �p. Similarly 'IV is a Huberized mean of Y 2
i , which replaces extreme

values of Y 2
i with either a0 or b0. The median-type estimator 'I is invariant to
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monotone transformation of the data and can be regarded as limiting cases of
the Huber-type estimators 'III and 'IV .

M -estimation under a non-IID set up has been considered by a large num-
ber of authors; see, for example, Beran (1991) and Koul and Surgailis (1997).
Here we follow the work of Koul and Surgailis (1997), which allows a very gen-
eral class of weight functions '. The following central limit theorem (proven in
the appendix) provides the basis for inference on the solution point �0 using
the estimator TN .

Theorem 1 Assume ' and � satisfy Assumption 1, and fYig has a square

integrable SDF. Then B
1
2 (TN � �0) is asymptotically normal with mean zero

and variance given by A'=[�
0

(�0)]
2, where

A' =
X
i2L

covf'(Qi � �0); '(Q0 � �0)g:

Theorem 1 is linked with in
uence functions and von Mises expansions.
When ' is smooth (twice continuously di�erentiable), for example, ' = 'II ,
then

P
i2I '(Qi � TN ) = 0. We can then use a Taylor series expansion to

deduce that

B
1
2 (TN � �0) =

B�
1
2

P
'(Qi � �0)

B�1
P
'0(Qi � �0) + (TN � �0)B�1

P
'00(Qi � T �)

;

where T � takes values between �0 and TN . Consequently the central limit
theorem follows from that of B�

1
2

P
'(Qi��0) and by proving the consistency

of TN . However, when ' is no longer smooth, e.g., ' = 'I , we can not make
use of a Taylor series expansion, so the general proof of Theorem 1 in the
appendix takes a substantially di�erent approach.

4 Correction of bias

The statistics TN is consistent for the solution point �0, which is not necessarily
the same as the location parameter �. We can obtain a robust estimator �̂ of
� by adding bias = �� �0 to the estimator TN , yielding

�̂ = TN + bias :

This bias depends on the choice of the weight function ' and on the distribu-
tion function FQ. We can compute it analytically in some cases. To do so, we
�rst determine the function �(x). Let Z; � and � denote the standard Gaussian
random variable and its density and distribution functions. Then

�(x) = E'(Qi � x) = E'(logZ2 + log �2 � x):

Thus the choice of ' = 'I yields

�I(x) = 3� 4�
�
e
x
2
�log �

�
: (6)
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Therefore, �I(�0) = 0 implies

�0 = 2 log � + 2 log
�
��1( 3

4
)
�
: (7)

and hence
biasI = �� �0 =  ( 1

2
) + log 2� 2 log

�
��1( 3

4
)
�
: (8)

Next consider ' = 'II . First we simplify 'II as:

'II(x) = 4�
�
e
x
2
+ 1

2
 ( 1

2
)+ 1

2
log 2

�
� 3:

Therefore we obtain

�II(x) = 4Ca

�
elog ��

x
2
+ 1

2
 ( 1

2
)+ 1

2
log 2

�
� 3; (9)

where Ca is the distribution function of a standard Cauchy random variable.
Now �II(�0) = 0 implies

�0 = 2 log � +  ( 1
2
) + log 2� 2 log

�
C
�1
a ( 3

4
)
�
: (10)

and hence
biasII = �� �0 = 2 log

�
C
�1
a ( 3

4
)
�
:

For 'III and 'IV , there are no easy closed forms for �(x); however, we can
numerically evaluate the bias correction in these cases.

5 Construction of con�dence intervals

Given a consistent estimator of A' and knowledge of �0(�0), we can use The-
orem 1 to construct an asymptotically correct CI for �0 and hence for � and
�2. Since A' is equal to the SDF of the stationary process f'(Qi � �0)g at
zero frequency, we use a multitaper spectral approach to estimate it (Ser-
roukh et al., 2000). Let f
c;t; t = 0; : : : ; N � 1g for c = 0; : : : ; C � 1 be the
�rst C orthogonal Slepian tapers of length N and design bandwidth param-
eter W = 4=N , where C is an odd integer. When dealing with a time series,
let K be the index set f0; : : : ; C � 1g; otherwise, for a random �eld, let it be
f(c; c0) : c; c0 = 0; : : : ; C � 1g. For k 2 K, we de�ne

Jk =
X
i

�k;i'(Qi � TN ); (11)

where either �k;i = 
c;t with i = t for a time series or �k;i = 
c;u
c0;v with
i = (u; v) if we have a random �eld. De�ne

~� =

P
k Jk�k;:P
k �

2
k;:

; where �k;: =
X
i

�k;i:

We then estimate A' by

Â' =
1

K

X
k

(Jk � ~��k;:)
2; (12)
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where K is the size of the index set K. Since �0 is unknown, we use the consis-
tent estimator TN in its stead in equation (11). Thus the resulting multitaper
estimate Â' is consistent for A' if the SDF of the process f'(Qi � x)g at
zero frequency is continuous at x = �0. The latter holds for a wide range of
Gaussian processes fYig and for many choices of '. In particular, a su�cient
condition is that the process fYig is ergodic, for which TN is also strongly
consistent. Following the recommendation of Serroukh et al. (2000), we choose
C = 5 so that the bandwidth of the resulting multitaper estimator is approx-
imately 7=N .

What remains is to compute �0(�0). For ' = 'I , we use equation (6) and
equation (7) to obtain

�
0

I(�0) = �2�
�
e
�0
2
�log �

�
e
�0
2
�log � = �2�

�
��1( 3

4
)
�
��1( 3

4
): (13)

Similarly for ' = 'II , use of equation (9) gives

�
0

II(�0) = �2 ca

�
elog ��

�0
2
+ 1

2
 ( 1

2
)+ log 2

2

�
elog ��

�0
2
+ 1

2
 ( 1

2
)+ log 2

2 ;

where ca is the density function of Ca. By using equation (10), we can simplify
the above to

�
0

II(�0) = �2 ca

�
C
�1
a ( 3

4
)
�
C
�1
a ( 3

4
): (14)

This has the same form as that of equation (13) with the Gaussian density func-
tion being replaced by the Cauchy. For other choices of ', namely, ' = 'III
and 'IV , there is no convenient analytic form (although one might surmise
that it will have a form similar to equations (13) and (14)), but we can evaluate
�
0

(�0) numerically.

6 E�ciency study

Robust estimators guard against data contamination but are less e�cient than
estimators designed to be e�cient when underlying assumptions are correct. If
a time series or random �eld is truly Gaussian, a robust estimator can perform
poorly compared to the mean-type estimator. It is therefore of interest to study
the asymptotic relative e�ciency (ARE) of the two estimators for a range of
Gaussian processes. Theorem 1 yields, approximately,

eTN � Log-normal
�
�0;

�2

B

�
; where �2 =

A'
[�0(�0)]2

:

Since E exp(TN ) � exp(�0+�
2=(2B)), an approximately unbiased and robust

estimator of �2 is given by

~�2 = exp
�
TN + bias� ( 1

2
)� log 2�

�̂2

2B

�
; where �̂2 =

Â'
[�0(�0)]2

: (15)
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Assuming that Â' is a consistent estimator of A', the ARE is equal to

ARE = lim
B!1

var f�̂2g

var f~�2g
=
A[�0(�0)]

2

�4A'
; (16)

where �̂2 = B�1
P
i Y

2
i is the usual mean-type estimator, which is asymptot-

ically normal with mean �2 and variance

A

B
=

2

B

1X
i=�1

(covfY0; Yig)
2

(Percival, 1995; Mondal, 2007). Using a Hermite expansion, we could write A'
in terms of the autocovariance sequence of fYig, but this expansion is not useful
in practice for computing exact AREs. We therefore resort to some simulation
studies, specializing to the case ' = 'I , i.e., the median-type estimator.

In the �rst example, we simulate 10,000 AR(1) time series of length 1024
for various values of the unit lag correlation � (Kay, 1981). For each series we
take Yt = W2;t, the level j = 2 Haar wavelet coe�cients. We compute exact
values of �2; �0 and �

0(�0), so we only need A=A' to determine the ARE via
(16). This ratio can be approximated by var f

P
Y 2
t g=var f

P
'I(log Y

2
t ��0)g.

Hence for each time series we compute
P
Yt and

P
'I(log Y

2
t � �0) and then

compute their corresponding sample variances using all 10,000 replications.
Fig. 3a plots the estimated ARE against � 2 (�1; 1). The ARE is about 50%
for all �, is smallest when � is close to �1 and attains its peak value at about
� = :75, above which it then declines slightly. As an additional check of our
theory, we note that we obtain similar results if we just compute the ratio of
the Monte Carlo variances for �̂2 and ~�2 as suggested by equation (16).

For the second example, we consider a stationary fractionally di�erenced
(FD) process with long memory parameter � 2 (0; 1

2
) (� = 0 corresponding to

white noise, and the process becomes more highly correlated as � approaches
1=2). For selected � we simulate 10,000 FD time series of length 1024 (Craig-
mile, 2003) and estimate the ARE for median-type versus mean-type estima-
tors as in the AR(1) example. Fig. 3b plots the ARE versus �. We see that
the ARE is close to 50% for all �.

A simulation experiment with fractional Brownian surfaces (see, e.g., Zhu
and Stein, 2002) gives about 60{65% e�ciency (details are omitted).

7 Simulation study

Here we report the results of a simulation study that demonstrates the e�-
cacy of our theory and that expands upon the example considered in Fig. 1
and 2. We consider a Gaussian stationary process that models a burst-free
portion of an actual ocean shear series previously considered in Percival and
Guttorp (1994), Percival (1995) and Percival and Walden (2000). The SDF
for this model is piecewise power law (Percival and Walden, 2000, p. 331). We
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Fig. 3 Approximate asymptotic relative e�ciency of the median-type estimator with re-
spect to the mean-type estimator for (a) AR(1) processes with parameter � and (b) FD
processes with parameter �.

generate realizations of length N = 4096 using the Gaussian spectral synthe-
sis method (Percival and Walden, 2000, Sect. 7.8; the parameter M described
there is set to 4N). We compute the usual (mean-type) unbiased estimator �̂2j
of the wavelet variance for scales �j = 2j�1, j = 1; : : : ; 9, using equation (3)
with fhj;lg based upon the D(6) wavelet �lter, i.e., the Daubechies extremal
phase �lter of width L = 6 (Daubechies, 1992, Table 6.1). We then compute
an approximately unbiased median-type robust estimator ~�2j using ' = 'I . To
do so, we let TN be the log of the median of the same squared coe�cients used
to form �̂2j and then use it in equation (15), along with the bias term given by

equation (8), Â' by (12) and �0(�0) by (13). We next corrupt the simulated
time series by taking its orthonormal D(6) discrete wavelet transform (DWT)
and multiplying selected level j = 3 coe�cients by log Gaussian white noise
exp(�t) with E �t = 0 and var f�tg = 1:5. There are 512 DWT coe�cients at
level j = 3, of which we select 51 at random for alteration. Additionally, we
alter randomly chosen patches of coe�cients, where the patchiness is dictated
by a realization of a stationary Markov chain �t with

Pr(�t = 1j�t�1 = 0) = 0:09; Pr(�t = 0j�t�1 = 1) = 0:01

and Pr(�t = 0) = 0:1. Any level j = 3 coe�cient with a corresponding �t
of zero is multiplied by log Gaussian white noise with the same statistical
properties as before. The total number of altered coe�cients on the average is
approximately 97 allowing some coe�cients to be altered twice. We take the
inverse DWT to create a contaminated version of the original simulated time
series (note that, although we have altered just the level j = 3 DWT coe�-
cients, the wavelet coe�cients that are used to estimate the wavelet variance
are based on the over-complete maximal overlap DWT (Percival and Walden,
2000), for which we can expect the contamination to leak out into scales ad-
jacent to �3). We then compute the mean- and median-type wavelet variance
estimators. Finally we repeat this entire process over again for 1000 di�erent
realizations.

Tables 1 and 2 summarize the results of our simulation study. Table 1
concerns just the uncontaminated series. The second column shows the average
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Table 1 Summary of wavelet variance estimates of uncontaminated simulated ocean shear
data

j mean f�̂2j g ~�2j =�̂
2
j SD f�̂2j g SD f~�2j g relative e�ciency

1 0.000585 1.00 0.000015 0.000022 48.1%

2 0.000904 1.00 0.000031 0.000041 57.7%

3 0.001743 1.00 0.000080 0.000102 60.7%

4 0.007150 1.00 0.000550 0.000693 63.0%

5 0.040047 1.00 0.004489 0.005638 63.4%

6 0.214502 1.01 0.034153 0.042587 64.3%

7 0.858346 1.01 0.216022 0.269830 64.1%

8 1.197886 1.03 0.422244 0.547121 59.6%

9 0.641284 1.27 0.367127 0.567690 41.8%

Table 2 Summary of wavelet variance estimates of contaminated ocean shear data

j �̂2C;j=�̂
2
j ~�2C;j=�̂

2
j SD f�̂2C;jg SD f~�2C;jg RMSE f�̂2C;jg RMSE f~�2C;jg

1 12.35 1.05 0.160084 0.000028 0.160142 0.000042

2 62.68 1.12 1.366784 0.000065 1.367238 0.000130

3 72.02 1.13 3.046282 0.000157 3.047273 0.000278

4 4.98 1.07 0.693477 0.000743 0.693714 0.000885

5 1.04 1.01 0.035961 0.005404 0.035981 0.005413

6 1.01 1.00 0.033752 0.043243 0.033762 0.043225

7 1.00 1.01 0.220646 0.274201 0.220536 0.274209

8 0.97 0.99 0.385875 0.504024 0.387926 0.503808

9 1.02 1.32 0.391146 0.668527 0.391120 0.698292

of the 1000 estimates of �̂2j . The third column shows the ratio of the average

of the median-type estimates ~�2j to the average of the mean-type estimates �̂2j .
With the exception of the largest scale �9, these ratios are very close to unity,
which indicates that the mean- and median-type estimates match up quite
well. The poorer agreement at scale �9 can be attributed to a downward bias
in the estimator Â' due to a sparsity of relevant data at that scale (if we were

to replace Â' in (15) with its actual value, the modi�ed version of ~�29 would
agree well with �̂29). The fourth and �fth columns give the sample standard
deviations (SDs) for the 1000 estimates of, respectively, �̂2j and ~�2j . The �nal
column gives the estimated relative e�ciency of the median-type estimator
to the mean-type estimator. It is interesting that the e�ciency is markedly
smaller for scale �1 than for scales �2 to �8. The small e�ciency for scale �9
can again be attributed to lack of su�cient data relevant to this scale (if we
increase the sample size to N = 4 � 4096, the e�ciency increases back up to
above 60%).
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Table 2 shows results involving the contaminated series, where �̂2C;j and

~�2C;j denote �̂
2
j and ~�2j when applied to the contaminated series. The second

column shows the ratio of the average of the mean-type estimates �̂2C;j for the
contaminated series to a similar average for the uncontaminated series, while
the third column shows a similar ratio, but now involving the average of the
median-type estimates ~�2C;j for the contaminated series. Contamination has
a very adverse e�ect on the mean-type wavelet variance estimates at small
scales (�1 to �4), whereas the median-type estimates are far more resistance to
contamination. Using the latter, we can draw inferences close to those we made
from the uncontaminated data. Note that the contamination has little e�ect on
the mean- or median-type estimates at scales �5 and above (the relatively poor
performance of ~�2C;9 can again be attributed to bias in the estimator Â'). The
remaining columns in the table show the sample SDs and root mean-square
errors (RMSEs) for the 1000 estimates of �̂2C;j and ~�2C;j . The RMSEs suggest
that the robust estimator performs better up to scale �4, beyond which it is
better to switch over to the mean-type estimator.

The time series that we selected from amongst the 1000 series to show
in Fig. 1 is typical in the sense that its level j = 3 actual RMSE for the
contaminated mean-type estimate is closest to the sample RMSE for the 1000
such estimates. The CIs based upon this series which are displayed in Fig. 2
are thus also typical of what we can expect to get. Note that the CIs for �29
based upon the median-type estimates are markedly smaller than those based
upon the mean-type estimates, which is not the case for scales �1 to �8. This
anomaly can again be attributed to bias in the estimator Â' due to lack of
su�cient data at that scale.

8 Application to cloud data

Fig. 4 shows the pre-processed brightness temperature image of a cloud �eld
over the southeast Paci�c Ocean obtained on 17 October 2001 as part of the
East Paci�c Investigation of Climate (EPIC) �eld experiment (Bretherton et
al., 2004). Strato-cumulus cloud �elds in that part of the world tend to be ho-
mogenous except for pockets of seemingly cloud-free air. These pockets of open
cells (POCs) are distinct from broken clouds, are coupled to the development
of marine rainfall and are characterized by low-aerosol air mass (Stevens et al.,
2005). The four squares in Fig. 4 indicate regions with four di�erent types of
clouds. Region (a) contains POCs; (b) consists of uniform stratus clouds and
thus has di�erent characteristics than the POC region; (c) has broken clouds;
and (d) has clouds that are forming a POC.

Satellite cloud data are often marked by contamination from various sources,
but the one of interest to us here is the presence of aberrant cloud types in
a region where a single cloud type is dominant. The four regions of focus in
Fig. 4 all have a dominant cloud type, but they are homogeneous to varying
degrees, with regions (a) and (b) being visually more so than (c) and (d). It is
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thus natural to resort to median-type estimators that are robust and e�ective
in extracting the characteristics of the dominant cloud type.

Fig. 5 shows conventional mean-type (gray squares) and robust median-
type (black) wavelet variance estimates and their 95% CIs (lines intersecting
squares vertically) for four diagonal scales (i.e., j0 = j) indexed by j = 1,
2, 3 and 4. Plot (a) is for the POC region. At the three smallest scales (�1
to �3) the median-type estimates take somewhat lower values than those for
the mean-type estimates, with the largest discrepancy occurring at scale �1.
While this pattern is consistent with this region being contaminated to some
degree by cloud types other than POCs, the fact that the mean- and median-
type estimates are comparable to within the sampling variability indicated by
the associated overlapping CIs suggests that the POC region is largely unaf-
fected by other cloud types. Plot (b) is for the uniform stratus clouds. Again
the mean- and median-type wavelet variance estimates and the associated CIs
suggest that this region is largely homogenous; however, unlike the POC re-
gion, the CI based upon median-type estimate at scale �1 is markedly wider
than the one based upon the mean-type estimate, which leads to the specu-
lation that the noise characteristics of the two regions are di�erent. Plots (c)
and (d) show the results for the regions with broken clouds and POC forma-
tion. At scales �1 and �2, the robust estimates of wavelet variances for the
broken clouds are almost an order of magnitude lower than the conventional
estimates, but also have much larger con�dence intervals. Broken clouds are
mixtures of various clouds, so the median-type estimates should pick out the
characteristics from the dominant cloud type; however, a larger fraction of
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other cloud types produces bigger con�dence intervals. The robust estimates
of wavelet variance for the region of POC formation are again much smaller
than for the conventional estimates, evidently because of the presence of other
cloud types; however, unlike the broken clouds region, the CIs based upon
the robust procedure are smaller in this region, indicating that the fraction
of other clouds present here is smaller than the fraction in the broken clouds
region.

One potential use for the wavelet variance in this application is to de-
�ne features that can be used to classify cloud regions on other images. The
wavelet variance curve for a POC region is uniquely identi�ed by a mono-
tonic decrease across scales �1 to �4, while an overall low level is indicative
of uniform clouds. In both cases, the mean- and median-type estimates are
comparable. By contrast, these two estimates are markedly di�erent for the
broken clouds region and the region of POC formation, with large uncertainty
in the median-based estimate being a potential identi�er for the broken clouds
region. More research is needed to determine if these patterns persist enough
across other images to serve as usual features for classi�cation.

0 2 4

j

(a)−8

−6

−4

−2

lo
g 

of
 w

av
el

et
 v

ar
ia

nc
e

0 2 4

j

(b)

0 2 4

j

(c)

0 2 4

j

(d)

Fig. 5 Log of wavelet variances at diagonal scales indexed by j = 1, 2, 3 and 4 for four
cloud regions. The gray and black squares show, respectively, the mean-type and robust
median-type estimates. The vertical lines bisecting the squares depict 95% CIs. Plot (a) is
for the POC region, (b) for uniform clouds, (c) for broken clouds and (d) for a forming POC
region

.

9 Discussion

The subject of robustness in statistics has been around for more than a quarter
of a century, but the usefulness of robust estimators in practice has been the
subject of some controversy; e.g., Stigler (1977) questions the usefulness of
the median as an estimator of the location parameter for real data. We have
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seen in Sect. 8 that mean- and median-type estimates of the wavelet variance
provide di�erent answers at certain scales for inhomogeneous cloud regions.
The robust estimates arguably allow us to pick out the characteristics of the
dominant cloud type better, thus providing an argument for the usefulness of
median-type estimates.

While a number of di�erent contamination models has been entertained for
time series data in the literature, we have introduced a new model based upon
the idea of scale-based multiplicative contamination. This model is based on
the supposition that contamination can occur and a�ect data at certain scales.
Our computer experiments indicate that, even if contamination is present at
some small scales, the larger scales will not be in
uenced much and should
have wavelet coe�cients that are close to Gaussian. Table 2 shows that the
mean-type estimators at larger scales produce smaller mean square error in
comparison to robust median-type estimators. A step forward would be to
identify the contaminated scales and devise a hybrid scheme whereby we use
the robust estimator for scales at which data are a�ected by contamination,
and then switch over to the mean-type estimator at other scales. This strategy
is used in certain wavelet shrinkage problems involving non-Gaussian data
(Gao, 1997). A question for future research is how to identify the scales at
which to switch over in practice.

The wavelet variance provides a simple and useful estimator of the inte-
gral of the SDF over octave bands. In particular, the Blackman and Tukey
(1958, Sec. 18) pilot spectra coincide with Haar wavelet variances. Recently
Tsakiroglou and Walden (2002) extended the pilot spectra of Blackman and
Tukey by utilizing the (maximum overlap) discrete wavelet packet transform.
The result is an SDF estimator that is competitive with existing estimators. In
the same vein, our proposed methodology can be extended to handle wavelet
packet transforms, thus providing a robust SDF estimator in the style of
Tsakiroglou and Walden (2002).

In practical applications, the Huber function � = �IV is of consider-
able interest because exp(TN ) gives rise to the median-type estimator when
�a = b = 0 with �a0 = b0 = 1 and to the mean-type estimator when
�a = b = 1. With a0 and b0 set appropriately, other values of �a = b = h
can the thought of as a compromise between the robust and the conventional
estimation procedures. It is thus of interest to set h so that the Huberized
estimator has a certain asymptotic relative e�ciency as given in (16). Follow-
ing Koul and Surgailis (1997), we could obtain an expression for the ARE via
the Hermite expansion and then try to �nd an h that achieves the required
e�ciency. This would, however, require knowledge of the autocovariance se-
quence of the underlying process. A better strategy is to estimate the ARE
in (16) by a nonparametric (multitaper) estimator for any given h and then
solve an optimization problem on a �nite grid for a range of values of h.

Although not considered in the present paper, wavelet-based analysis of
variance can be applied to multivariate processes; for example, Whitcher et
al. (2000) discuss wavelet covariance analysis of two time series. Wavelet vari-
ances and covariances from multiple time series can be used to form a wavelet
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dispersion matrix, which is useful for studying scale-based correlations and
can lead to scale-based versions of clustering, classi�cation and principle com-
ponent analysis. A robust estimator of this dispersion matrix becomes of in-
terest when multivariate data (time series or random �elds) are subject to
contamination. Following the discussion of Maronna et al. (p. 205, 2006), the
methodology we have described can be adapted to form robust pairwise es-
timators of wavelet variances and covariances. As is true in the univariate
case, these robust estimators are asymptotically normal, which provides a ba-
sis for drawing inferences; however, for �nite sample sizes, these estimators
might not yield a dispersion matrix that is non-negative de�nite (even though
asymptotically they will). There are several alternative approaches to devising
robust estimators of the wavelet dispersion matrix, including M -estimators,
S-estimators, Stahel{Donoho estimators, minimum covariance determinant es-
timators, and orthogonalized Gnandesikan{Kettenring estimators; for details,
see, Maronna (1976), Tyler (1987), Croux and Haesbroeck (2000), chapter 6
of Maronna et al. (2006) and the references therein. A study of the strengths
and weaknesses of all these estimators is a subject for future research.

A Proof of Theorem 1

We denote by fPn; n = 0; 1; : : :g the sequence of Hermite polynomials. Let � be the density
function for a standard Gaussian random variable Z. For a function P with

R1
�1 P (x)�(x) dx

<1, we write the Hermite expansion as

P (x) =
1X
n=0

cnPn(x); where cn =

Z 1

�1

P (x)Pn(x)�(x) dx: (17)

The function P (x) is said to have Hermite rank % if in the expansion (17) we have

c0 = c1 = � � � = c%�1 = 0; c% 6= 0:

Prior to proving the theorem, we need to prove the following six lemmas.

Lemma 1 The following functions have Hermite rank two.

(i) P (x) = x2 � 1

(ii) P (x) = log(x2)�
R
log(x2)�(x) dx

(iii) P (x) = 1(log x2�y) �
R
1(log x2�y)�(x) dx; y 2 R

(iv) P (x) = '(log x2 � y)�
R
'(log x2 � y)�(x) dx; y 2 R.

Proof of Lemma 1. Recalling that P0(x) = 1, P1(x) = x and P2(x) = x2�1, note that each
P (x) is an even function such that

R
P (x)�(x) dx = 0, implying that c0 = c1 = 0, whereasR

P (x)(x2 � 1)�(x) dx 6= 0. ut

Lemma 2 If P is any of the functions in Lemma 1 and if fYig has a square integrable
spectral density, then the autocovariances sP;k of the random process fP (Yi)g satisfy

�2P =
X
k

sP;k > 0: (18)
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Proof of Lemma 2. Since P is even, we can use the Hermite expansion to write

P (Yi) =
X

c2mP2m(Yi):

The SDF of fP (Yi)g is given by

SP (f) =
X

c22m(2m)!S
(�2m)
Y (f)

(see Hannan 1970, p. 83), where S
(�2m)
Y is 2m-fold convolution of SY . Since S

(�2m)
Y is strictly

positive at the origin and there exists one m such that c2m 6= 0, we see that �2P = SP (0) is
strictly positive, and hence the result follows. ut

Lemma 3 If P is any of the functions in Lemma 1 and if fYig has a square integrable
SDF, then, as N !1, B�1

P
i2I P (Yi) converges in distribution to �PZ, where �

2
P is as

in equation (18).

Proof of Lemma 3. This follows directly from Lemma 1, Lemma 2 and Theorem 2 of Breuer
and Major (1983). ut

Lemma 4 Let 	N (x) = B�1
P

'(Qi � x) and TN be de�ned as earlier. Then TN � �0 =
oP (1) and 	N (TN ) = OP (B

�1).

Proof of Lemma 4. Let FQ;N be the empirical distribution function of fQi; i 2 Ig. As
Qi 6= Qj , i 6= j a.s. (almost surely), the jumps of the empirical distribution FQ;N are such
that �FQ;N (x) = FQ;N (x)�FQ;N (x�) � B�1 a.s., and therefore �	N (x) = O(B�1) a.s.;
indeed, a.s.

j�	N (x)j �

Z
j�FQ;N (y + x)jjd'(y)j � j'j=B;

where j'j is the variation of '. Now since '(�1) < 0 and '(1) > 0, we have that
	N (�1) > 0 and 	N (1) < 0. Since 	N (x) is non-increasing, the graph of 	N crosses
the x-axis in a neighborhood of 0 at some point TN with 	N (TN+) � 0 and 	N (TN�) � 0
and hence j	N (TN+)j+ j	N (TN�)j = j	N (TN�)� 	N (TN+)j � j'j=B. Hence, for all N ,
we have

j	N (TN )j � j'j=B a.s. (19)

We now prove consistency of TN . Let � > 0. Since 	N (x) is non-increasing, we note that

Pr(TN < �0 + �) > Pr
�
	N (TN ) > 	N (�0 + �)

�
:

By equation (19), it then follows that

Pr
�
	N (TN ) > 	N (�0 + �)

�
> Pr

�
j'j=B > 	N (�0 + �)

�
:

However, by Lemma 3, 	N (�0 + �) converges in probability to �(�0 + �), which is strictly
less than zero. Thus Pr

�
j'j=B > 	N (�0 + �)

�
converges to one. Hence

Pr(TN < �0 + �)! 1:

A similar argument implies that Pr(TN > �0 � �) converges to one, from which the consis-
tency of TN follows. ut

Lemma 5 For y � 0 we have

BE

�Z
f'(x� y)� '(x)g dfFQ;N (x)� FQ(x)g

�2
� constant y:
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Proof of Lemma 5. Consider the Hermite expansion of P (Yi) = 1log Y 2
i
�x�FQ(x), namely,

1log Y 2
i
�x � FQ(x) =

X
m

a2m(x)P2m(Yi):

Lemma 1 says that P has Hermite rank 2. For x � y we de�ne FQ(x; y) = FQ(y)� FQ(x),
a2m(x; y) = a2m(y)� a2m(x) and FQ;N (x; y) = FQ;N (y)� FQ;N (y). Then we can write

1x�log Y 2
i
�y � FQ(x; y) =

X
m

a2m(x; y)P2m(Yi):

It then follows from the orthogonality of the Hermite polynomials that

X
a22m(2m)!s2mY;0 = E f1x�log Y 2

i
�y � FQ(x; y)g

2 � FQ(x; y): (20)

Now

E
hX
i2I

f1x�log Y 2
i
�y � FQ(x; y)g

i2
= var

nX
m

a2m(x; y)
X
i

P2m(Yi)
o2

=
X
m

X
m0

a2m(x; y)a2m0 (x; y)
X
i

X
i0

cov
�
P2m(Yi); P2m0 (Yi0 )

�
:

However, it follows from Hannan (1970, p. 117) that cov
�
P2m(Yi); P2m0 (Yi0 )

�
= 0 for m 6=

m0 and cov
�
P2m(Yi); P2m(Yi0 )

�
= s2m

Y;i�i0
. Therefore,

E
hX
i2I

f1x�log Y 2
i
�y � FQ(x; y)g

i2
=
X
m

a22m(x; y)(2m)!
X
i

X
i0

s2mY;i�i0 :

Let frY;k = sY;k=sY;0; k 2 Lg be the autocorrelation sequence of fYig. Then, by equa-
tion (20), we obtain

X
a22m(x; y)(2m)!

XX
s2mY;i�i0 � FQ(x; y)

X
i

X
i0

r2Y;i�i0 :

Hence

BE
n
FQ;N (x; x+ y)� FQ(x; x+ y)

o2
= B�1E

hX
i2I

f1x�log Y 2
i
�y � FQ(x; y)g

i2

� FQ(x; y)B
�1

X
i

X
i0

r2Y;i�i0 � constant FQ(x; y): (21)

The last inequality follows since the SDF of fYig is square integrable. Next we note thatZ
f'(x� y)� '(x)g dfFQ;N (x)� FQ(x)g

=

Z n
FQ;N (x+ y)� FQ;N (x)� FQ(x+ y) + FQ(x)

o
d'(x)

=

Z
fFQ;N (x; x+ y)� FQ(x; x+ y)g d'(x);

so that

hZ
f'(x� y)� '(x)g dfFQ;N (x)� FQ(x)g

i2
�

Z n
FQ;N (x; x+ y)� FQ(x; x+ y)

o2
d'(x):
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Taking expectation we obtain

E
hZ

f'(x� y)� '(x)g dfFQ;N (x)� FQ(x)g
i2

�

Z
E
n
FQ;N (x; x+ y)� FQ(x; x+ y)

o2
d'(x):

So equation (21) yields

BE
hZ

f'(x� y)� '(x)g dfFQ;N (x)� FQ(x)g
i2

�

Z
BE

n
FQ;N (x; x+ y)� FQ(x; x+ y)

o2
d'(x)

� constant

Z
FQ(x; x+ y) d'(x)

� constant

Z
y sup fQ(z) d'(x) � constant y;

where the last inequality follow since the density function fQ(x) of FQ(x) is bounded. This
completes the proof. ut

Lemma 6

hN = B
1
2

Z
f'(x� TN )� '(x� �0)g dfFQ;N (x)� FQ(x)g = oP (1):

Proof of Lemma 6. Assume WLOG �0 = 0. Then we note that

Pr(jhN j > �)�Pr

"
sup

jyj<B�

B

1
2 j

Z
f'(x� y)� '(x)g dfFQ;N (x)� FQ(x)gj > �

#

+Pr(jTN j > B�
):

The second term is oP (1) by Lemma 4. The �rst term follows by mimicking the chaining
argument in Lemma 2.2 of Koul and Surgailis (1997). As in Koul and Surgailis (1997), we
prove the result for 0 � y � B�
 and ' nondecreasing. We put yB = B�
 and let

K = blog2(ByB)c:

We consider a sequence of partitions

fxi;k = yBi2
�k; 0 � i � 2kg; k = 0; 1; : : : ;K

of intervals [0; yB ]. For a y in [0; yB ] and a k in f0; 1; : : : ;Kg, we de�ne i(k; y) by

xi(k;y);k � y < xi(k;y)+1;k:

We then obtain a chain by linking 0 to a given point y 2 [0; yB ] as

0 = xi(0;y);0 � xi(1;y);1 � � � � � xi(K;y);K � y < xi(K;y)+1;K :

Let

RN (y) = B
1
2

Z
f'(x� y)g dfFQ;N (x)� FQ(x)g

= B
1
2

Z
fFQ;N (x+ y)� FQ(x+ y)g d'(x);

and RN (y; z) = RN (z)�RN (y). We can then use the above chain to write

RN (0; y) = RN (xi(0;y);0; xi(1;y);1) +RN (xi(1;y);1; xi(2;y);2) + � � �

+RN (xi(K�1;y);K�1; xi(K;y);K) +RN (xi(K;y);K ; y):
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Hence

sup
y2[0;yB ]

R2
N (0; y)

� 2
�K�1X
k=0

sup
y2[0;yB ]

jRN (xi(k�1;y);k�1; xi(k;y);k)j
�2

+ 2 sup
y2[0;yB ]

R2
N (xi(K;y);K ; y):

We now apply Cauchy{Schwartz inequality to obtain

E sup
y2[0;yB ]

R2
N (0; y) � 2K

K�1X
k=0

E sup
y2[0;yB ]

R2
N (xi(k�1;y);k�1; xi(k;y);k)

+2E sup
y2[0;yB ]

R2
N (xi(K;y);K ; y):

We now give a bound to the last term. We use the monotonicity of FQ;N , boundedness of ',
and the fact that FQ is the distribution of log of a chi-square random variable. We obtain

jRN (xi(K;y);K ; y)j = B
1
2

���Z FQ;N (z + xi(K;y);K ; z + y) d'(z)

�

Z
FQ(z + xi(K;y);K ; z + y) d'(z)

���;
which is less than or equal to

B
1
2

Z
FQ;N (z + xi(K;y);K ; z + xi(K;y)+1;K) d'(z) + constant B

1
2 yB2

�K :

The above is also less than or equal to

jRN (xi(K;y);K ; xi(K;y)+1;K)j+ constant B
1
2 yB2

�K

for a di�erent choice of constant.
Next we observe that for k = 0; 1; : : : ;K � 1

sup
y2[0;yB ]

jRN (xi(k;y);k; xi(k;y)+1;k+1)j

= max
0�i�2k+1�1

sup
y2[xj;k+1;xj+1;k+1]

jRN (xi(k;y);k; xi(k;y)+1;k+1)j

� max
0�i�2k+1�1

jRN (xi;k+1; xi+1;k+1)j

Hence in view of Lemma 5, we get

E sup
y2[0;yB ]

R2
N (xi(k;y);k; xi(k;y)+1;k+1) �

2k+1�1X
i=0

ER2
N (xi;k+1; xi+1;k+1) � constant yB ;

and similarly

ER2
N (xi(K;y);K ; xi(K;y)+1;K) �

2K�1X
i=0

ER2
N (xi;K ; xi+1;K) � constant yB :

Consequently,

E sup
y2[0;yB ]

R2
N (0; y) � constant yBK

2 + constant By2B2
�2K :

Now from the de�nition of K, we obtain 2�2K = B�2(1�
), and thus

ByB2
�2K = O(B1�2
�2+2
) = O(B�1); K2yB = O(B�
 log22B):

This completes the proof. ut
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Proof of Theorem 1. By virtue of Lemma 4, we can write

OP (B
�1) = 	N (TN ) = B�1

X
i2I

'(Qi � TN )�

Z
'(x� �0) dFQ(x)

=

Z
'(x� TN ) dFQ;N (x)�

Z
'(x� �0) dFQ(x)

=

Z
'(x� TN ) dfFQ;N (x)� FQ(x)g

+

Z
f'(x� TN )� '(x� �0)g dFQ(x)

= �N + �(TN )� �(�0);

where �N =
R
'(x� TN ) dfFQ;N (x)� FQ(x)g. This implies

�(TN )� �(�0) = oP (B
� 1

2 )� �N :

We observe that B
1
2 �N converges to A

1=2
' Z because Lemma 3 implies that B

1
2
R
'(x �

�0) dfFQ;N (x)�FQ(x)g is asymptotically normal with mean zero and variance A', whereas
Lemma 6 implies that

B
1
2 �N = B

1
2

Z
'(x� �0) dfFQ;N (x)� FQ(x)g+ oP (1):

We use a Taylor series expansion to write

�(TN )� �(�0) = �
0

(�0)(TN � �0) + oP (j(TN � �0j):

Hence

�
0

(�0)(TN � �0) + oP (j(TN � �0j) =B�1

Z
'(x� �0) dfFQ;N (x)� FQ(x)g+ oP (B

� 1
2 ):

Taking the absolute value on both sides and using the de�nition of 	N (�0) and the fact
that �(�0) = 0, we obtain

jTN � �0jj�
0

(�0) + oP (1)j � jB�1	N (�0) + oP (B
� 1

2 )j:

The right hand side is OP (B
� 1

2 ), and hence (TN � �0) = OP (B
� 1

2 ). Finally

B
1
2 (TN � �0) =

�
�
0

(�0)
��1

B
1
2 	N (�0) + oP (1);

completing the proof of Theorem 1. ut
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