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Abstract

The acquisition and interpretation of increasingly high resolution climate

data from polar ice and firn cores motivates the question: What is the finest

depth or time scale on which measurements on cores arrayed over a given area

correlate? We analyze dated depth series of electrical and oxygen isotope mea-

surements from a spatial array of firn cores with 3.5–7 km spacing in Dronning

Maud Land, Antarctica, each with a temporal span of approximately 200 years.

We use wavelet analysis to decompose the series into components associated

with changes of averages on different scales, and thus deduce which scales are

dominated by environmental noise, and which may contain a common signal.

We find that common signals in electrical records have time scales of approxi-

mately 1–3 years. We identify only one electrical signal which rises significantly

above the background in our 200-year records, evidently corresponding to the

Tambora eruption. Several smaller signals correlate in a few of pairs of cores,

one of which may correspond to a known volcanic event, but the others appear

to be spurious. We present a simulation-based method for testing the signifi-

cance of apparent electrical signal correlations, and highlight the importance of

accurate relative dating between cores. In the case of oxygen-isotope records,

we find, surprisingly, no significant correlation on any scale in the records, for

any of the pairs of cores. There is, however, a weak trend toward positive corre-

lation at longer time-scales (up to 16 years). Statistical theory for the relevant

confidence intervals and the observed statistics of the records permit estimation

of the length of a data series necessary to reliably detect a hypothetical corre-

lation equal to that observed. For the highest correlation observed on 16 year

scales, core records of about 380 years (approximately 30 m at the Dronning

Maud Land site) would be necessary to establish significance.



1 Introduction

Ice cores are believed to be one of the best non-instrumental climate archives available. The

aim of analyzing an ice or firn core is usually to acquire precise data on climate, represen-

tative of some known area, with the highest possible temporal resolution. Ice cores record

global and regional climate signals on millennial, centennial and, in some cases, decadal time

scales [EPICA Community Members, 2004; Petit et al., 1999; Legrand and Mayewski, 1997;

Mayewski et al., 1994; Taylor et al., 1993; Alley et al., 1993]. Technology now permits analy-

sis of many ice and firn cores with much finer resolution in depth, and thus with annual and

sub-annual resolution in time. Yet short, transient signals may record very local variations in

precipitation, wind-redistribution or other processes, which can obscure information about

rapid climate variations. The questions thus arise: For cores arrayed over a given area, what

is the finest temporal scale on which data, and thus climate inferences, correlate (i.e., how

‘representative’ is one core of another)? How does the degree of representation depend on

the depth to which cores extend? And, what can we infer from observations on a core array

about the depositional or environmental differences between core sites that limit correlation?

Addressing these questions can contribute to the analysis of many cores collected during

traverse programs such as the International Trans-Antarctic Scientific Expedition (ITASE)

[Mayewski, 2003] or European Project for Ice Coring in Antarctica (EPICA) [Winther et al.,

2002], which are designed to yield information on spatial variability in climate over short

time scales.

In this paper, we investigate the correlation between several time series obtained from

EPICA firn cores (Fig.1) at five locations separated by distances between 3.5 and 7 km, on the

polar plateau in Dronning Maud Land, East Antarctica [Karlöf et al., 2005]. In particular,

we examine depth-series of Electrical Conductivity Measurement (ECM), Dielectric Profiling

(DEP), and oxygen isotopes. On the Antarctic plateau, we consider the small spatial scale of
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this core array to be sufficient to exclude differences in records caused by different source area

or large-scale precipitation patterns, different distances to the coast, or different temperatures

caused by different elevations. Wind-driven redistribution of snow, however, is a potential

cause of accumulation variability on these scales, and thus could cause variability in those

firn core signals that are affected by accumulation.

We address the question of degree of representation by using wavelet methods to analyze

the core records. Wavelet methods have been applied to a wide variety of geophysical data

series [e.g., Percival and Mofjeld, 1997; Kumar and Foufoula–Georgiou, 1997], including

ones arising in glaciology [Winebrenner et al., 2001]. The key idea is that depositional or

post-depositional variability (i.e., ‘environmental noise’) acts differently at different scales

in space and time, and thus will have scale-dependent influences on any signal that arises

from the underlying (e.g., climate) dynamical process of interest. We use wavelet analysis

to decompose the data series into components that are associated with changes of averages

on different scales [Percival and Walden, 2000]. By comparing the wavelet decomposition of

neighboring cores, we can deduce which scales are dominated by environmental noise and

which scales may contain a common signal. In addition, wavelet analysis offers a scale- and

time-based decomposition of the sample variance that allows us to identify time-locations

in the original series at which important changes occur. Finally, based on the large-sample

statistical properties of wavelet coefficients, we can estimate to what depth a core must

extend in order to have a reasonable chance of detecting (statistically) the presence of a

common signal at a particular scale.
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2 Data and Methods

2.1 Data

In this study we have used electrical conductivity measurements (ECM), dielectrical profiling

(DEP) and oxygen isotopes. After the records are dated and a time series is constructed

each record is trimmed to cover the same time period (183 years). Prior to the analysis the

data is re-sampled to a constant sampling interval δ. The ECM record is block-averaged to

the same sampling frequency as for the DEP in order to compare the electrical records on

similar scales. This procedure can be regarded as low pass filtering. For a full description of

the data and area description we refer the reader to Karlöf et al. [2004] and Karlöf [2005].

Conceptually the overall variance of a firn and ice core time series can be divided in two

components, one attributable to a ‘signal’ (variations in the series that are in common with

co-located core series) and the other, to ‘noise’ or local effects [Fisher et al., 1985]. The noise

could in principle be further divided into depositional and post-depositional components, but

how exactly to quantify this decomposition is open to question. Fortunately this additional

decomposition of the noise is of limited interest in this study since we are primarily interested

in determining the scales at which the signal is dominant.

2.2 Wavelet methods

Changes in accumulation will likely result in firn core time series whose underlying mean

and variance are changing with time, which means such series cannot be modelled globally

as realizations of a stationary process. In recent years wavelet methods have emerged as

useful alternatives to Fourier-based methods for analyzing time series with time-varying

characteristics. Both methods proceed by transforming the time series under study into

a collection of new values known as coefficients. The key reason that wavelet analysis is
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more useful than Fourier analysis for series with time-varying characteristics is that wavelet

coefficients are influenced by local events in a series, whereas Fourier coefficients depend

upon the entire series [Kumar and Foufoula–Georgiou, 1997]. In this study we have used

a version of the discrete wavelet transform (DWT) known as the maximal overlap DWT

(MODWT). The MODWT is a decomposition of a time series on a scale by scale basis,

yielding localized coefficients that can then be compared with those of other time series to

ascertain the correlation structure on a scale by scale basis. Unlike the usual orthogonal

DWT, which is naturally defined only for series whose sample sizes are a multiple of a

power of two, the MODWT is well-defined for all sample sizes, which is conveninent here

because our sample sizes typically do not satisfy the required constraint (one way of using

the orthogonal DWT would be to truncate our series down to an acceptable sample size,

but this is unappealing because our series are already short as is). The MODWT is not an

orthogonal transform, but, as we note below, it can be used to construct a multiresolution

analysis and an analysis of variance that parallel those given by the orthogonal DWT. In

what follows, we give a brief description of the MODWT. We refer the reader to Chapters 5

and 8 of Percival and Walden [2000] and references therein for more details.

Consider a time series of regularly spaced data that we express as a vector X of length

N with elements X0, X1, . . . , XN−1. The MODWT wavelet coefficients for a particular scale

(indexed by a positive integer j) are obtained by circularly filtering X with a wavelet filter

{h̃j,l} of width Lj:

W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l mod N , t = 0, 1, . . . , N − 1. (1)

The physical scale for these coefficients is given by λj = 2j−1δ, where δ is the sampling

interval between observations (for example, δ = 0.05 years for the time series shown in

Figure 2). The MODWT wavelet coefficients can be interpreted as being proportional to

changes between two adjacently located and possibly weighted averages of the time series,
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with the effective width of both averages being λj. If we place the MODWT coefficients in

a vector W̃j, we can express the above in matrix notation as

W̃j = WjX, (2)

where Wj is the N ×N transformation matrix for scale λj (its elements are dictated entirely

by {h̃j,l}).

Let us now consider the wavelet coefficients W̃j indexed by j = 1, 2, . . . , J0, where J0 is

a positive integer whose choice is application dependent. We can use these coefficients to

form a decomposition of the ‘energy’ ‖X‖2 ≡
∑N−1

t=0 X2
t in our time series if we make use of

one additional vector ṼJ0 , the so-called scaling coefficients for scale 2λJ0 . The elements of

this vector are formed by circularly filtering X with a scaling filter {g̃J0,l} of width LJ0 :

ṼJ0,t =

LJ0
−1∑

l=0

g̃J0,lXt−l mod N , t = 0, 1, . . . , N − 1. (3)

Placing these coefficients into the vector ṼJ0 , we can reexpress the above as

ṼJ0 = VJ0X, (4)

where VJ0 is a suitably defined N ×N transformation matrix. These scaling coefficients can

be interpreted as being proportional to localized and possibly weighted averages of the time

series, with the effective width of the average being 2λJ0 . The desired energy decomposition

takes the form

‖X‖2 =

J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2. (5)

In words, ‖W̃j‖2 is the contribution to the energy in the time series that is attributable

to changes in averages over the physical scale λj, while ‖ṼJ0‖2 is the contribution due to

averages over scale 2λJ0 .

Since the sample variance for X is given by

σ̂2
X =

1

N
‖X‖2 − X

2
, where X =

1

N

N−1∑
t=0

Xt, (6)
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we can form a scale-by-scale decomposition of the sample variance via

σ̂2
X =

1

N

J0∑
j=1

‖W̃j‖2 +
1

N
‖ṼJ0‖2 − X

2
. (7)

The terms 1
N
‖W̃j‖2 and 1

N
‖ṼJ0‖2 − X

2
can be regarded as the components of a wavelet

power spectrum, which decomposes the variance of X into variations on distinct scales. In

particular, the last of these terms is just the sample variance of the scaling coefficients (the

term 1
N
‖W̃j‖2 can also be regarded as a sample variance because there are theoretical reasons

for assuming that the population mean of W̃j is zero).

In addition to forming a wavelet power spectrum, we can use the MODWT coefficients to

create an additive decomposition of X that is known as a multiresolution analysis (MRA).

The components of an MRA are J0 ‘detail’ time series for scales λj, j = 1, 2, . . . , J0, defined

as

D̃j ≡ WT
j W̃j, (8)

along with a ‘smooth’ series for scale 2λJ0 , defined as

S̃J0 ≡ VT
J0

ṼJ0 . (9)

The desired additive decomposition of X is

X =

J0∑
j=1

D̃j + S̃J0 . (10)

In words, an MRA reexpresses X as the sum of J0 + 1 new time series, the first J0 of

which (the details) are associated with changes on scales λ1 up to λJ0 , while the last one

(the smooth) is associated with averages over the scale 2λJ0 . The details D̃j and smooth

S̃J0 are both associated with zero phase filters, which ensures that features in an MRA are

aligned properly with the corresponding time series. (It should be noted that the wavelet and

scaling coefficients themselves are not outputs from zero phase filters, but can be regarded
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approximately as such for certain wavelet filters if the coefficient vectors W̃j and ṼJ0 are

circularly shifted appropriate amounts. Without these shifts, features in the coefficients will

not line up properly with features in the time series.)

Because we are interested in the correlation between two different firn cores on a scale by

scale basis, we also consider a sample wavelet cross-correlation as a standardized covariance

between wavelet coefficients for two time series X and Y at a given scale:

ρ̂XY,j ≡
∑N−1

t=0 W̃X,j,tW̃Y,j,t

‖W̃X,j‖ · ‖W̃Y,j‖
, (11)

where W̃X,j and W̃Y,j contain the MODWT wavelet coefficients for scale λj for, respectively,

X and Y, and the elements of these two vectors are denoted by, respectively, W̃X,j,t and

W̃Y,j,t. In words, ρ̂XY,j tells us how correlated the series X and Y are at scale λj and allows

us to study the relationship between the two series on a scale-by-scale basis. This statistic

is roughly analogous to the sample magnitude-squared coherence from Fourier analysis.

The wavelet power spectrum, the MRA and the sample wavelet cross-correlation are

the wavelet-based decompositions and sample statistics that we use in this paper. How

exactly we use them involves some adaptation of the material discussed above. First,

note that Equations (7) and (11) use all available MODWT wavelet coefficients (we will

ignore the portion of the wavelet power spectrum due to the scaling coefficients because

it is not of direct interest). Some of these coefficients – the so-called boundary coeffi-

cients – can be adversely affected by the circular filtering operation that is inherent in

the MODWT (see Percival and Walden [2000] for details). By definition the boundary

coefficients are those whose values would in general change if we were to eliminate the

modulo operation in Equations (1) and (3). Including these nonboundary coefficients can

lead to unacceptable biases, but this defect can be mitigated if we use reflection boundary

conditions instead. This involves taking the original series of length N and concatenating

it with a reversed version of the series to form an extended series of length 2N , namely,
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X0, X1, . . . , XN−2, XN−1, XN−1, XN−2, . . . , X1, X0. This series necessarily has the same sam-

ple mean and variance as the original series X; however, by construction, the beginning and

end of the extended series match up well, whereas this need not be the case for the original

series, which can lead to large biases in the boundary coefficients. The extended series is

then analyzed in place of the original series in the manner described above. Biases due to

the circularity assumption are largely mitigated, and computer experiments indicate that the

resulting estimators 1
N
‖W̃j‖2 and ρ̂XY,j have smaller mean squared errors than ones using

just the non-boundary wavelet coefficients. Under certain assumptions, both estimators have

an associated population value, and confidence intervals for the unknown population value

can be computed based upon these estimators. We make use of these confidence intervals

in Figures 6 and 7. Computation of these intervals is discussed in detail in Percival and

Walden [2000] and Whitcher et al. [2000] for estimators that make use of just the nonbound-

ary coefficients, but asymptotically these estimators have the same large sample properties

as ones formed using all the coefficients and reflection boundary conditions.

The results of a wavelet analysis will depend (to some degree at least) on the particular

set of wavelet filters used. The wavelet and scaling filters {h̃j,l} and {g̃J0,l} for j ≥ 2 and

any J0 depend just on the choice of the wavelet filter {h̃1,l} for scale λ1. We considered three

different wavelets {h̃1,l}, the Haar wavelet, the Daubechies extremal phase wavelet of width

L1 = 4 (D(4)) and the Daubechies least asymmetric wavelet of width L1 = 8 (LA(8)). When

choosing an appropriate wavelet, we considered the introduction of undesired artifacts (more

artifacts with shorter wavelets), the number of coefficients influenced by boundary conditions

(more with longer wavelets) and the localization in time (less with longer wavelets). We

choose to use the D(4) wavelet as a compromise between the extremes offered by the Haar

and LA(8) wavelets, but the results of our analysis are virtually the same using the other

two wavelets. The maximum level out to which we computed the MODWT was J0 = 9 for
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the electrical data and J0 = 6 for the 18O data.

3 Results

3.1 Records of electrical conductivity measurements and dielectrical profiling

Firn and ice core ECM and DEP records display narrow excursions, i.e., spikes, above a

background. These spikes are typically associated with historical depositions on the ice

sheet surface of volcanic acid and, in the case of DEP, other ions [Moore et al., 1992; Wolff

et al., 1995]. Between spikes, the records are typically relatively quiescent; i.e., the sample

means and variances change only slowly with depth, and correlations between samples decay

rapidly with increasing lag (although records with sub-annual temporal resolution can be

used to identify annual layering [Taylor et al., 2005]). The depths of spikes in a firn and ice

core, together with dating of volcanic inputs, enable the derivation of climate information

such as accumulation rate histories.

Figure 2 shows the DEP and ECM records for the five EPICA cores used in this study,

after removal of variations in both records on the scale of the record length that are unrelated

to volcanic inputs. We have first corrected the DEP data for a known variation with firn

density, following the standard procedure described in Hofstede et al. [2004], and further

removed a linear trend with depth. Second, we have removed a linear trend with depth in

the ECM records, which is thought to result from decreasing contact resistance at the ECM

electrodes as a function of firn density (although the physics underlying this effect remain

poorly-understood [Karlöf et al., 2000]). This pre-processing of DEP and ECM records helps

to eliminate artifacts in the MRAs due to the circularity assumption used in forming the

MODWT coefficients (Equations (1) and (3)).

All the records in Figure 2 show their largest event at approximately the year 1815, which

was the year of the volcanic eruption of Tambora. The duration of this event in each record
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is a few years. All of the DEP records also show a smaller candidate event of a few years

in duration, around 1883, which was the year of the Krakatoa eruption. (For brevity, we

will henceforth refer to the ca. 1815 and 1883 events as the Tambora and Krakatoa events,

respectively, while noting that conclusive identification of events with eruptions can only

result from detailed analysis that lies beyond the scope of this paper.) The high noise levels

in the ECM records make visual identification of the Krakatoa event problematic. The

apparent commonality of event durations in the records, however, suggests analysis of signal

characteristics in terms of temporal scale.

Figure 3 shows wavelet power spectra for the DEP and ECM records. Each of the DEP

spectra shows a peak on a scale of either 1.6 or 3.2 years, corresponding to the approximate

durations of the Tambora and Krakatoa events in the records. The high levels of small scale

noise in ECM records could be obscuring peaks at these scales in 3 of the 5 ECM spectra,

but data from cores MA20 and MD20 do show either a local or global peak at 3.2 years. We

interpret this as confirmation that the predominant scales for signals in electrical records

occur at 1.6 to 3.2 years. We are thus motivated to construct a partial multi-resolution

analysis consisting of the sum of the details D̃6 and D̃7, corresponding to 1.6 and 3.2 years,

respectively. This sum of details constitutes one way to ‘de-noise’ the individual records, and

serves also as a basis for a scale-dependent correlation analysis. Figure 4 shows D̃6 + D̃7 for

DEP and ECM records. The Tambora event dominates each record in these figures as well,

but lower noise levels here show additional candidate events more clearly. Slight uncertainties

in core dating may also be apparent in, for example, the slightly later occurrence of the

Tambora event in the record from core M20, compared to the other DEP (though not ECM)

core records.

Consider first the results from DEP records (left-hand column of Figure 4). The solid

vertical lines in each plot mark the years 1815, 1883 and 1965 (the dashed lines result from
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analysis of the ECM records, to be discussed momentarily). The relatively small Krakatoa

event (1883) again appears in each record, somewhat more cleanly here than in the originals.

A candidate event also occurs in all cores except MA20 around 1965, with greater clarity than

in the original records, and with magnitude similar to the Krakatoa event. The occurrence

in core M20 is at 1970, which is noticeably later than at the other cores recording this event.

The Tambora event for core M20 also occurs slightly ‘late’. The failure of the 1965–1970

event to appear in the record from MA20 suggests that events with magnitudes (relative

to background) near those of the Krakatoa and 1965–1970 events may be near some limit,

below which recording in the firn is unreliable within even a small area, i.e., below which a

signal (or lack of signal) in a single ice core is not representative. If so, we would expect the

relatively noisy ECM records to show less correlation than the corresponding DEP records.

Correlations between ECM records are not obvious, however, even after wavelet de-

noising (right-hand column of Figure 4). To address this, we have estimated the statistical

significance of correlations between variations on scales j = 6 and 7 in the various ECM

records. Briefly, we used apparently quiescent periods in the ECM series to develop a model

for event-less noise, and established limits that trap the entire scatter plot of two ECM

records of D̃6 + D̃7 with probability 0.95 under the null hypothesis that the two records are

uncorrelated. Excursions outside of these limits in the actual records identify localized events

that are worthy of further study. (Full details are given in Appendix A.) Only four such events

were identified by this procedure. Their times are indicated in all of the plots in Figure 4 by

dashed vertical lines. The Krakatoa event appears as a statistically significant event in only

3 of the 10 possible pairings of ECM records, namely M20 vs. MA20, M20 vs. MB20, and

M20 vs. MC20. What may be the 1965–1970 event, albeit shifted systematically in time, is

significantly correlated in 3 parings (M20 vs. MB20, MA20 vs. MB20, and MB20 vs. MC20)

as well. The possible time-shift of this event highlights the importance of core dating to our
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correlation analysis – as shown in Appendix A, oscillations in neighboring cores of similar

wave-form but differing phases can easily fail to correlate.

Given the noise characteristics and dating accuracies of ECM records in this study, we

infer a single firn core is not representative of events of the strength of Krakatoa. We also

find, however, apparently spurious correlations in 5 pairings. Three of these involve MB20 in

the year 1917. Visual examination of the MB20 record shows that the spurious correlations

are induced by a burst of noise in that record around 1917. The other two involve MB20

in 1839 and have a similar interpretation. Thus, the dangers of interpreting small events in

a single firn core include ‘finding’ events that would not be recorded elsewhere, as well as

missing events that would appear in data from a more extensive array of cores.

3.2 Oxygen isotopes

Oxygen isotope records differ strongly from the electrical records in both character and

detail. Figure 5 shows the oxygen isotope records for each of the 5 cores, together with the

corresponding wavelet power spectra. Detailed descriptions of the data are given by Karlöf

[2004] and Karlöf et al. [2005]. Three of the records show maximum variance at the 2 year

time scale, and the other two, at 4 years (although one of these (MA20) has nearly identical

variances at the 2 and 8 year time scales). The variances in the records are not, however,

homogeneous over the lengths of the records. Figure 6 shows, for each core, the series of

wavelet coefficients on scales indexed by j = 1 and 3 (0.5 and 2 years) over the length of

the record, as well as wavelet power spectra computed separately for the first and second

halves of the record (o’s and x’s, respectively) with associated 95% confidence intervals. The

apparent damping with increasing age of variance on scales of 0.5 to 2 years is consistent,

at least qualitatively, with the diffusion of oxygen isotopes after deposition [Johnson et al.,

2000; Rempel et al., 2001; Rempel and Wettlaufer, 2003].
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The oxygen isotope records from separate cores do not, however, correlate on the time

scales where most of the variance occurs. Rather, we observe a weak trend toward positive

correlation increasing time scales, in just 3 of the 10 possible pairwise correlations (Figure 7).

In no case do the observed correlations reach statistical significance. Thus, surprisingly, we

find no strong evidence of correlation between any of these 5 closely spaced core records on

any time scale up to and including the longest time scale in the records, 183 years. Because

of the strong, well-established link between oxygen isotopes and temperature on longer time

scales [Petit et al., 1999], we are motivated to ask what the shortest time scale would be

on which we could expect to test for statistically significant correlation, given the statistical

properties exhibited by our 183 year records. We address this question in the following

section.

4 Discussion and Concluding Remarks

The data in section 3 show that the degree to which a signal in a given core occurs also in

neighboring cores depends on the nature (e.g., electrical vs. isotopic), scale and magnitude

of that signal – i.e., an answer the question ‘How representative is an ice core?’ requires

that we specify carefully what representation we seek. The data presented here clarify the

necessary specifications in the cases of electrical and oxygen-isotope data, but further work is

required both for complete, quantitative specification at the EPICA site, and to understand

the depositional, climatic and other factors that may affect specifications in other locations.

In the case of electrical data, and especially ECM data, the size of an event is clearly a

strong determinant of whether it is found in neighboring records as well. From the limited

data presented here, it appears that the size threshold, above which an event is likely to

correlate, is somewhat larger than that of the event (likely) due to the eruption of Krakatoa.

Examination of the events in Figure 4 shows, however, that event size is variable between
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cores. Thus further observations are needed to characterize such variability quantitatively.

Such characterization could then be combined with the results in Appendix A to quantify

the probability that events of given mean magnitude in separate core records would correlate

significantly. A prerequisite, however, to any such work will be verification that the uncer-

tainties in depth and depth-age scales for the ice cores involved are, or can be made, small

in comparison to scales on which most of the signal energy occurs.

Our ability to detect significant global correlations at a given scale between pairs of cores

is necessairly limited by the length of the core. To explore the effect of core length, note

that, in Figure 7, the largest observed wavelet cross-correlation ρ̂XY,j occurs between the

MA20 and MC20 18O series at a 16 year scale, for which j = 6. Since we are using the D(4)

wavelet, an approximate 95% confidence interval based upon the estimate ρ̂XY,6
.
= 0.65 is

given by [
tanh

{
tanh−1(0.65) − 1.96√

( N
64

− 5)

}
, tanh

{
tanh−1(0.65) +

1.96√
( N

64
− 5)

}]

[Whitcher et al., 2000]. The resulting interval [−0.96, 1.0] is very wide and traps zero,

so, at the 0.05 level of significance, we certainly cannot reject the null hypothesis that

the corresponding population cross-correlation ρXY,6 is zero. Suppose, however, that the

population cross-correlation ρXY,6 were actually equal to the observed cross-correlation and

that, if we had more data available to us, we would still get an estimate of ρ̂XY,6
.
= 0.65.

Given this scenario, we can determine how large N must be so that the lower limit of the

95% confidence interval would result in our just being on the borderline of rejecting the null

hypothesis; i.e., we want to determine N such that the lower limit of the 95% confidence

interval is zero. Setting the expression for this lower limit to zero and solving for N yields

N = 64

(
1.96

tanh−1(0.65)

)2

+ 320
.
= 729.

Since δ
.
= 0.52 years for the 18O series, we would need to have a series covering about 380 years
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to have enough statistical evidence to be able to (just barely) reject the null hypothesis of

zero cross-correlation. At this site this corresponds to a core that would be approximately

30 m deep.

Finally, a general understanding of signal correlation will require understanding of the

physical mechanisms – both depositional and post-depositional – that underlie signal vari-

ability. One site may be eroded in the beginning of a precipitation event, whereas another

is eroded later. This may explain how localized events in time can be anti-correlated in the

scale-by-scale correlation study. Moreover, the probability of eroding a ‘significant’ amount

of snow related to a certain event is dependent on wind, temperature, initial snow density,

thickness of snow layer and the time elapsed between deposition and erosion. (The small

spatial scale considered in this study suggests disregarding temperature and elapsed time as

causes, leaving initial snow density and thickness of snow layer as the important factors in

this study.) Study of these questions may require multi-year experiments with core arrays

and detailed meteorological records to compare conditions of signal incorporation with the

actual signals that remain in cores.

Appendix A

Here we give details about how we ascertained the significance of localized correlations in

D̃6 + D̃7 between pairs of ECM series, e.g., M20 and MA20. For each core we subtracted

off a line determined by linear least squares to obtain a set of residuals, say, r0, r1, . . . , rN−1,

where here N = 3666. We fit a first-order autoregressive (AR) model to the middle half of

these residuals, i.e., r916, r917, . . . , r2748, using Burg’s algorithm [Percival and Walden, 1993].

Using just the middle half ensures that the fitted AR model is focused on the apparently

quiescent portions of both series. We also considered higher-order AR models, but found

a first-order model to adequately describe the correlation properties for all five cores. We
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then simulated a pair of Gaussian distributed series [Kay, 1981], one using the fitted model

for M20, and the other, for MA20. While each series is autocorrelated, the two series were

generated independently of each other, and hence any apparent localized correlations at any

given scale between the simulated series are due to sampling variations, and not to an actual

coupling between the two series. We then computed U ≡ D̃6 + D̃7 for both simulated series.

Let U (M20)
t be the tth element of U for the series simulated using the AR model for M20,

and let U (MA20)
t be the corresponding quantity for MA20. We determined the ellipse such

that all values of U (M20)
t versus U (MA20)

t , t = 0, . . . , N − 1, were contained within or on the

ellipse, with a least one point being on the ellipse. The ratio of the semi-major and minor

axes of the ellipse was dictated by the ratio of the observed standard deviations of the M20

and MA20 series – this is quite close to unity, so the ellipse is close to being a circle. We

repeated this procedure 10, 000 times, which allows us to empirically determine how well we

can expect U (M20)
t to match up locally with U (MA20)

t when in fact the M20 and MA20 series

are uncorrelated.

The dots in Figure 8 show the scatter plot of U (M20)
t versus U (MA20)

t for the actual data,

along with two ellipses. The inner (outer) ellipse is the ellipse that trapped 95% (99%) of

scatter plots for the 10, 000 simulated pairs. There are five excursions in the actual data

outside of the 99% ellipse, and these are labelled on the plot with the year of the point

(U (MA20)
t ,U (M20)

t ) that lies furtherest from the origin. Significant locally correlated events in

the actual cores should tend to fall close to a 45◦ line through the origin of the plot. If the

event is displaced in time in one of the cores due to uncertainty in matching depth with age,

points in the scatter plot will rotate away from the 45◦ line in toward either the horizontal

or vertical axes. There are three events (1812, 1815 and 1818) that fall close to the 45◦

line, all of which are associated with the Tambora event. Two other events are also noted

at 1822 and 1886, both close to the vertical axis through the origin. The first of these is
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evidently part of the Tambora event that was still prominent in M20, but less so in MA20.

The event at 1886 is due primarily to a large peak in M20, which is visible in the upper

right-hand plot of Figure 4 (there is a vertical dotted line marking 1886). Below this plot

is the one for MA20, which does have a peak around 1886 also, but displaced toward the

date of the Krakatoa event (1883). Thus there is evidence of a significant local correlation

between the M20 and MA20 around the time of the Krakatoa event if we ignore concerns

about the dating of the two cores.
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FIGURE CAPTIONS

Figure 1. Study area in Amundsenisen, Dronning Maud Land, with detailed overview of the

study area and local topography (inset). Drill sites are marked with a plus sign.

Figure 2. DEP and ECM records (left- and right-hand columns, respectively) from the five cores.

The sampling interval δ is 0.05 years for both records. The different amplitudes and

shapes of the peaks are an effect of snow depositional processes at the drill site. The

DEP data were sampled every 5 mm with a 10 mm electrode, which effectively acts as

a low-pass filter, resulting in a higher signal to noise ratio.

Figure 3. Wavelet power spectra for DEP and ECM records (left- and right-hand columns, re-

spectively) from the five cores. These plots depict the decomposition of the sample

variance for each record across the scales λj δ = 0.05 × 2j−1 years, where j = 1, . . . , 9.

The spectra are based upon the Daubechies D(4) wavelet and a MODWT using reflec-

tion boundary conditions as applied to the residuals from a linear least squares fit to

a given record. Note that small-scale noise is the dominant contributor to the sample

variance for the ECM records, whereas dominant scales for the DEP records are 1.6

and 3.2 years.

Figure 4. Sum of MODWT details D̃6 and D̃7 for DEP and ECM records (left- and right-hand

columns, respectively) from the five cores, computed using the same setup for the

MODWT as described for Figure 3. Collectively these two details capture variations

on scales of 1.6 and 3.2 years. The solid vertical lines on each plot mark the years 1815

(the Tambora event), 1883 (the Krakatoa event) and 1965; the dotted vertical lines

mark 1839, 1886, 1917 and 1970.

Figure 5. Oxygen isotope records and corresponding wavelet power spectra (left- and right-hand

columns, respectively) from the five cores. The sampling interval δ is 0.52 years. The
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spectra are based upon the Daubechies D(4) wavelet and a MODWT using reflection

boundary conditions applied to each displayed record.

Figure 6. Time-aligned wavelet coefficients at scales indexed by j = 1 and 3 for the oxygen isotope

records from the five cores (left-hand column), along with wavelet power spectra at

all scales (right-hand column) for the first and second half of each record (o’s and

x’s, respectively). The wavelet coefficients and spectra are based upon the Daubechies

D(4) wavelet and a MODWT using reflection boundary conditions. The spectra are

plotted along with 95% confidence intervals Note that the variability in W̃1 increases

with time for all five cores, which is confirmed by the fact that the 95% confidence

intervals for the spectra for two halves do not overlap. The tendency for variability to

increase with time dissipates as the scale increases.

Figure 7. Wavelet cross-correlations at lag τ = 0 for the ten possible pairings of the five oxy-

gen isotope records, along with 95% confidence intervals. These are based upon the

Daubechies D(4) wavelet and a MODWT using reflection boundary conditions.

Figure 8. Scatter plot of D̃6 + D̃7 for the M20 ECM record versus the same sum of details

for the MA20 record. The details are based upon the Daubechies D(4) wavelet and

MODWTs using reflection boundary conditions. The points in the scatter plot are

formed by plotting the tth element of D̃6 + D̃7 for the M20 ECM record (top right-

hand plot in Figure 4) versus the corresponding element for the MA20 ECM record

(second plot in the right-hand column). The inner and outer rings depicts 95% and

99% confidence limits for assessing significant excursions (see Appendix A for details).

There are five significant excursions, and the years of the most extreme part of each

excursion are indicated on plot close to the corresponding value on the scatter plot.
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Figure 8.


