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Abstract

The circulant embedding method for generating statistically exact simulations of time series

from certain Gaussian distributed stationary processes is attractive because of its advan-

tage in computational speed over a competitive method based upon the modified Cholesky

decomposition. We demonstrate that the circulant embedding method can be used to gen-

erate simulations from stationary processes whose spectral density functions are dictated

by a number of popular nonparametric estimators, including all direct spectral estimators

(a special case being the periodogram), certain lag window spectral estimators, all forms of

Welch’s overlapped segment averaging spectral estimator and all basic multitaper spectral

estimators. One application for this technique is to generate time series for bootstrapping

various statistics. When used with bootstrapping, our proposed technique avoids some –

but not all – of the pitfalls of previously proposed frequency domain methods for simulating

time series.

Keywords: Circulant Embedding; Gaussian Process; Power Law Process; Surrogate Time

Series; Time Series Analysis



1 Introduction

Suppose that we have a real-valued time series that can be considered to be a realization of a

portion X0, X1, . . . , XN−1 of a zero mean Gaussian stationary process {Xt} with an unknown

spectral density function (SDF) given by SX(f), |f | ≤ 1/2, where f is a normalized Fourier

frequency (i.e., the sampling interval between Xt and Xt+1 is assumed to be unity). The

problem of estimating SX(·) based upon an observed time series is the subject of a number

of textbooks (see, e.g., Bloomfield (2000), Jenkins and Watts (1968), Kay (1988), Koopmans

(1995), Marple (1987), Percival and Walden (1993) or Priestley (1981)). The SDF estimators

that are most widely used in practice fall into one of two categories, namely, parametric and

nonparametric estimators. Parametric estimators presume a functional form for SX(·) that

is dictated by a certain number of parameters (usually assumed to be small compared to the

sample size N). Estimation of these parameters in turn leads to an SDF estimator. Suppose,

for example, that SX(·) has the form of an SDF for a pth order stationary autoregressive

(AR) process; i.e., we assume that {Xt} can be expressed at least approximately as

Xt =
p∑

j=1

φjXt−j + εt,

where {εt} is a zero mean Gaussian white noise process with variance σ2
ε , while φ1, . . . , φp

are p fixed coefficients. Estimation of the p + 1 parameters via, say, φ̂j and σ̂2
ε yields a

parametric SDF estimator of the form

Ŝ
(ar)
X (f) ≡ σ̂2

ε∣∣∣1 − ∑p
j=1 φ̂je−i2πfj

∣∣∣2 .

Parametric estimators can also be based upon autoregressive/moving average (ARMA) pro-

cesses (see, e.g., Kay (1988) or Marple (1987)).

By contrast, nonparametric estimators do not assume a functional form for the SDF,

but are essentially based on a presumed theoretical relationship between the SDF and the
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autocovariance sequence (ACVS) {sX,τ} for {Xt}, namely,

SX(f) =
∞∑

τ=−∞
sX,τe

−i2πfτ , (1)

where

sX,τ ≡ cov{Xt, Xt+τ} = E{XtXt+τ}

(here E{Xt} denotes the expected value of the random variable (RV) Xt, and the right-hand

equality follows because of the assumption that E{Xt} = 0). Some well-known nonpara-

metric estimators are direct spectral estimators (including the periodogram), lag window

spectral estimators, Welch’s overlapped segment averaging (WOSA) spectral estimator and

multitaper spectral estimators (see §3 for precise definitions). All of these well-known esti-

mators can be expressed as

Ŝ
(np)
X (f) =

N−1∑
τ=−(N−1)

ŝ
(np)
X,τ e−i2πfτ , (2)

where {ŝ(np)
X,τ } is an estimator of the ACVS such that ŝ

(np)
X,−τ = ŝ

(np)
X,τ . A comparison of the

above with Equation (1) indicates that these estimators implicitly assume sX,τ = 0 when

|τ | ≥ N . A potential difficulty with lag window estimates is that they can be negative at

certain frequencies, which is problematic since all theoretical SDFs must be nonnegative.

This difficulty can be easily avoided with a proper choice of the lag window (and it cannot

occur with direct, WOSA or multitaper spectral estimates). In what follows, we concentrate

on nonnegative nonparametric estimators; i.e., Ŝ
(np)
X (f) ≥ 0 for all f .

Estimation of the SDF along with the assumption that {Xt} is a Gaussian zero mean

process yields a complete statistical model for a time series. One practical use for this model

is to generate simulated time series whose statistical properties closely resemble the time

series under study; i.e., we want to generate portions of realizations from a Gaussian zero

mean process whose SDF is given by the estimated SDF. For this use, AR and ARMA para-

metric estimators have been advocated because the functional form of the approximating
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models leads to an exact and computationally efficient method for generating realizations

(Kay (1981)); here the qualifier ‘exact’ means that the statistical properties of the simulated

series are in exact agreement with the estimated model for the time series under study (see

Wood and Chan (1994) for additional discussion). The goal of this paper is to point out

that, for all nonnegative nonparametric estimators that can be expressed in the form of

Equation (2), it is possible to generate realizations exactly and efficiently using circulant

embedding. To our knowledge, this interesting connection between commonly used nonneg-

ative nonparametric estimators and circulant embedding has not been pointed out before in

the literature.

The remainder of this paper is organized as follows. In §2 we review the circulant embed-

ding method for simulating stationary Gaussian processes. This method is not fully general

in that a nonnegativity condition must hold in order for it to work, and there are certain

stationary processes for which this condition fails to be true. In §3, we demonstrate that

this nonnegativity condition holds for all SDFs corresponding to nonnegative nonparamet-

ric estimators, after which we give some computational details for specific estimators. One

application for our proposed simulation technique is in bootstrapping time series, which we

discuss in §4. We make some concluding remarks in §5.

2 Circulant Embedding Approach to Simulation

The circulant embedding method for generating realizations of Gaussian stationary processes

was introduced into the statistical literature in an appendix to Davies and Harte (1987) (and

hence is sometimes called the ‘Davies–Harte method’; see also Wood and Chan (1994));

however, the method predates this appendix, with Woods (1972) being an early reference in

a two dimensional formulation. The basic idea behind the method is as follows.
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Suppose that U is an M dimensional vector whose elements U0, U1, . . . , UM−1 are a

portion of a zero mean Gaussian stationary process with ACVS {sU,τ}; i.e., U obeys a

multivariate Gaussian distribution with a mean vector containing just zeros and with a

covariance matrix whose (j, k)th element is given by sU,j−k. Given this ACVS for lags 0 to

M , we compute

Sk ≡
M∑

τ=0

sU,τe
−i2πfkτ +

2M−1∑
τ=M+1

sU,2M−τe
−i2πfkτ , k = 0, 1, . . . , 2M − 1, (3)

where fk ≡ k/(2M); the above is the discrete Fourier transform (DFT) of

sU,0, sU,1, . . . , sU,M−2, sU,M−1, sU,M , sU,M−1, sU,M−2, . . . , sU,1. (4)

The circulant embedding method requires that the Sk’s be nonnegative. This condition

is known to hold for certain stationary processes (see, e.g., Gneiting (2000) or Craigmile

(2003)), but it need not hold for other such processes. Assuming that in fact Sk ≥ 0, let

Z0, Z1, . . . , Z2M−1 be a set of 2M independent standard Gaussian RVs (hence each Zk has

zero mean and unit variance). We now form the following complex-valued sequence:

Vk ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z0

√
S0/(2M), k = 0;

(Z2k−1 + iZ2k)
√

Sk/(4M), 1 ≤ k < M ;

Z2M−1

√
SM/(2M), k = M ;

V∗
2M−k, M < k ≤ 2M − 1;

(5)

(in the above the asterisk denotes complex conjugation). We then use the DFT to construct

the real-valued sequence

Vt =
2M−1∑
k=0

Vke
−i2πfkt, t = 0, . . . , 2M − 1. (6)

By construction, a vector containing V0, V1, . . . , VM−1 has exactly the same multivariate

Gaussian distribution as the vector U; i.e., we can regard a realization of the first M values
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of the Vt sequence as a realization of U0, U1, . . . , UM−1 (Davies and Harte (1987) and Wood

and Chan (1994)).

In matrix terms, the circulant embedding method follows from the following three facts.

First, if C is an 2M × 2M circulant matrix (i.e., for j = 1, . . . , 2M − 1, its jth row is

obtained by circularly shifting its zeroth row to the right by j units), then we can write

C = FΛFH , where F is a 2M × 2M unitary matrix whose (j, k)th element is given by

exp(−i2πjk/2M)/
√

(2M), Λ is a diagonal matrix, and FH is the Hermitian transpose of F

(see, e.g., Barnett (1990), Equation 13.27). Second, if C is a real-valued covariance matrix,

the diagonal elements of Λ are necessarily nonnegative. Finally, if Z is a suitably defined

vector of uncorrelated complex-valued Gaussian RVs, then W = FΛ1/2Z is a real-valued

vector of RVs whose covariance matrix is C (equations similar to this one are commonly

used for simulating Gaussian RVs with a specified covariance structure). The circulant

embedding method follows by forming the circulant matrix C with the zeroth row given

by (4). The elements of Λ are proportional to the DFT {Sk} of this row. If these elements

are all nonnegative, then C is a valid covariance matrix. The vector W is then essentially

the DFT of suitably weighted uncorrelated elements of Z, and its first M elements have

exactly the same expected value and covariance as U0, U1, . . . , UM−1.

Dietrich and Newsam (1997) discuss an alternative formulation of the circulant embed-

ding method that is more efficient computationally and somewhat easier to implement. Let

Z0, Z1, . . . , Z4M−1 be a set of 4M independent standard Gaussian RVs, and redefine Vk in

Equation (5) to be

Vk = (Z2k + iZ2k+1)
√

Sk/2M, 0 ≤ k ≤ 2M − 1.

As before, construct Vt as the DFT of Vk via Equation (6). Let �{z} and �{z} denote the

real and imaginary parts of the complex variable z. The sequences �{V0}, . . . ,�{VM−1} and

�{V0}, . . . ,�{VM−1} are two independent realizations of U0, . . . , UM−1.
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Although neither variation on the circulant embedding method can be used with certain

stationary processes, it is attractive computationally when it is applicable. Once the fre-

quency domain weights Sk have been computed, we can make use of the computationally

efficient fast Fourier transform algorithm to compute the DFT needed to generate one or

two realizations. The computational burden of this algorithm is of order M · log2(M), which

is much less than the order M2 burden required by a competing exact method based upon

the modified Cholesky decomposition (Dietrich and Newsam (1997)).

3 Simulations from Nonparametric SDF Estimates

Suppose now that we have a nonnegative nonparametric SDF estimate Ŝ
(np)
X (·) given by

Equation (2). Define ŝ
(np)
X,τ = 0 when |τ | ≥ N . By Wold’s theorem (see, e.g., Priestley

(1981)), this estimate is the SDF for some stationary process, which we denote as {Ut} to

match up with our discussion in §2. If we let sU,τ = ŝ
(np)
X,τ in Equation (3) and if M ≥ N , we

obtain

Sk =
M∑

τ=0

ŝ
(np)
X,τ e−i2πfkτ +

2M−1∑
τ=M+1

ŝ
(np)
X,2M−τe

−i2πfkτ

=
M−1∑
τ=0

ŝ
(np)
X,τ e−i2πfkτ +

M−1∑
τ=1

ŝ
(np)
X,τ e−i2πfk(2M−τ) since ŝ

(np)
X,M = 0

=
M−1∑
τ=0

ŝ
(np)
X,τ e−i2πfkτ +

M−1∑
τ=1

ŝ
(np)
X,−τe

−i2πke−i2πfk(−τ)

=
M−1∑

τ=−(M−1)

ŝ
(np)
X,τ e−i2πfkτ =

N−1∑
τ=−(N−1)

ŝ
(np)
X,τ e−i2πfkτ = Ŝ

(np)
X (fk),

where we have made use of the facts that ŝ
(np)
X,−τ = ŝ

(np)
X,τ for all τ and exp(−i2πk) = 1 for all

k. Since we are assuming that Ŝ
(np)
X (f) ≥ 0 for all f , it follows immediately that Sk ≥ 0 for

all k, and hence the circulant embedding method is applicable. Alternatively, we can argue

that nonnegativity of the SDF estimate is equivalent to positive definiteness of the {ŝ(np)
X,τ }
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sequence; however, {ŝ(np)
X,τ } is finitely supported, i.e., ŝ

(np)
X,τ = 0 when |τ | ≥N, which implies

the validity of the circulant embedding approach (Dietrich and Newsam (1997)). We can

thus generate simulations for any length M ≥ N from a nonnegative nonparametric SDF

estimate Ŝ
(np)
X (·) by using the weights Sk = Ŝ

(np)
X (k/(2M)).

Let us now consider several well-known nonparametric SDF estimators that are nonneg-

ative and can be expressed in the form of Equation (2). We note that, if it is unrealistic to

assume that the time series under study is a realization of a process whose mean value is

known a priori (as is usually the case in practical applications), then we need to replace Xt

in the equations that follow with the recentered values Xt − X, where X ≡ ∑N−1
t=0 Xt/N is

the sample mean of the series.

3.1 Direct Spectral Estimators

By definition a direct spectral estimator is given by

Ŝ
(d)
X (f) =

∣∣∣∣∣
N−1∑
t=0

htXte
−i2πft

∣∣∣∣∣
2

,

where {ht} is a data taper normalized such that
∑N−1

t=0 h2
t = 1. This estimator is obviously

nonnegative; moreover, it can be reexpressed as

Ŝ
(d)
X (f) =

N−1∑
τ=−(N−1)

ŝ
(d)
X,τe

−i2πfτ ,

where

ŝ
(d)
X,τ ≡

⎧⎪⎪⎨⎪⎪⎩
∑N−|τ |−1

t=0 htXtht+|τ |Xt+|τ |, |τ | ≤ N − 1;

0, |τ | ≥ N

(see, e.g., Percival and Walden (1993), Equations (207c) and (207d)). If we let ht = 1/
√

N ,

we obtain the periodogram; i.e.,

Ŝ
(p)
X (f) ≡ 1

N

∣∣∣∣∣
N−1∑
t=0

Xte
−i2πft

∣∣∣∣∣
2

.
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With the help of a fast Fourier transform algorithm, we can compute the required weights

Sk efficiently by zero padding our original time series. Define htXt = 0 for t ≥ N , and,

as before, let fk = k/(2M) for any M ≥ N . We then compute the DFT of htXt, t =

0, . . . , 2M − 1, from which we obtain∣∣∣∣∣
2M−1∑
t=0

htXte
−i2πfkt

∣∣∣∣∣
2

=

∣∣∣∣∣
N−1∑
t=0

htXte
−i2πfkt

∣∣∣∣∣
2

= Ŝ
(d)
X (fk) = Sk. (7)

3.2 Lag Window Spectral Estimators

By definition a lag window spectral estimator is given by

Ŝ
(lw)
X (f) =

N−1∑
τ=−(N−1)

wτ ŝ
(d)
X,τe

−i2πfτ ,

where {wτ} is called a lag window, and {ŝ(d)
X,τ} is the ACVS estimator corresponding to some

direct spectral estimator Ŝ
(d)
X (·) (often taken to be the periodogram Ŝ

(p)
X (·)). The above is

an example of Equation (2) if we define the corresponding ACVS estimator {ŝ(lw)
X,τ } to be

ŝ
(lw)
X,τ = wτ ŝ

(d)
X,τ . A lag window estimator can be reexpressed as

Ŝ
(lw)
X (f) =

∫ 1/2

−1/2
W (f − f ′)Ŝ(d)(f ′) df ′, where W (f) ≡

N−1∑
τ=−(N−1)

wτe
−i2πfτ

(see, e.g., Percival and Walden (1993), Equation (238a)). The function W (·) is called a

smoothing window. Since Ŝ(d)(f) ≥ 0, a sufficient (but not necessary) condition for Ŝ
(lw)
X (·)

to be nonnegative is that W (f) ≥ 0 for all f . Popular lag windows that are guaranteed to

yield a nonnegative estimate include the Parzen, Papoulis and Daniell windows (see Priestley

(1981) or Percival and Walden (1993)). The advantage of a lag window estimator is that its

variance is typically smaller than that of the corresponding direct spectral estimator because

of the smoothing across frequencies.

We can compute the weights Sk for a nonnegative lag window estimator as follows. We

first use Equation (7) to compute Ŝ
(d)
X (fk), k = 0, . . . , 2M − 1. We then use an inverse DFT
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to form

s̃
(d)
X,τ ≡ 1

2M

2M−1∑
k=0

Ŝ
(d)
X (fk)e

i2πfkτ , τ = 0, . . . , 2M − 1

(we note that s̃
(d)
X,τ = ŝ

(d)
X,τ for τ = 0, . . . , N − 1). We then define the sequence

w̃τ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
wτ , 0 ≤ τ < N ;

0, N ≤ τ ≤ 2M − N ;

wτ−2M , 2M − N < τ ≤ 2M − 1.

Finally we use a DFT to obtain the desired weights via

2M−1∑
τ=0

w̃τ s̃
(d)
X,τe

−i2πfkτ = Ŝ
(lw)
X (fk) = Sk.

3.3 Welch’s Overlapped Segment Averaging Spectral Estimator

A WOSA spectral estimator consists of (i) segmenting the time series into, say, NB different

segments, with each segment containing NS < N values; (ii) forming a direct spectral

estimator for each segment, with the same data taper {ht} being applied to each segment;

and then (iii) averaging all of the direct spectral estimators together (Welch (1967)). An

important aspect of this estimator is that the segments are allowed to overlap one another.

Mathematically, we can write

Ŝ
(wosa)
X (f) =

1

NB

NB−1∑
j=0

Ŝ
(d)
jNO

(f), where Ŝ
(d)
l (f) ≡

∣∣∣∣∣∣
NS−1∑
t=0

htXt+le
−i2πft

∣∣∣∣∣∣
2

, 0 ≤ l ≤ N − NS;

(8)

here NO is a positive integer that controls how much overlap there is between segments and

that must satisfy both NO ≤ NS and NO(NB − 1) = N − NS, while {ht} is a data taper

appropriate for a series of length NS (i.e.,
∑NS−1

t=0 h2
t = 1). Since the WOSA estimator is an

average of direct spectral estimators, we can reexpress it in the form of Equation (2); i.e.,

Ŝ
(wosa)
X (f) =

N−1∑
τ=−(N−1)

ŝ
(wosa)
X,τ e−i2πfτ ,
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where

ŝ
(wosa)
X,τ ≡

⎧⎪⎪⎨⎪⎪⎩
1

NB

∑NB−1
j=0

∑NS−|τ |−1
t=0 htXt+jNO

ht+|τ |Xt+jNO+|τ |, |τ | ≤ NS − 1;

0, |τ | ≥ NS.

It is clear from Equation (8) that a WOSA estimator must be nonnegative.

If we assume that the number of points NS in each segment is an even number and if we

use the Hanning data taper, i.e.,

ht =

(
2

3(NS + 1)

)1/2 [
1 − cos

(
2π(t + 1)

NS + 1

)]
, t = 0, . . . , NS − 1,

then a popular choice for NO is to set it equal to NS/2, which gives us segments that overlap

by 50%. In this case the number of segments is given by NB = [2(N − NS)/NS] + 1, where

it is assumed that NS is selected such that this expression yields an integer value for NB.

By defining ht = 0 for t ≥ NS, we can obtain the weights Sk by averaging the outcome

of NB applications of Equation (7):

1

NB

NB−1∑
j=0

∣∣∣∣∣
2M−1∑
t=0

htXt+jNO
e−i2πfkt

∣∣∣∣∣
2

=
1

NB

NB−1∑
j=0

∣∣∣∣∣∣
NS−1∑
t=0

htXt+jNO
e−i2πfkt

∣∣∣∣∣∣
2

= Ŝ
(wosa)
X (fk) = Sk.

3.4 Multitaper Spectral Estimators

A multitaper spectral estimator is given by

Ŝ
(mt)
X (f) =

1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
t=0

hk,tXte
−i2πft

∣∣∣∣∣
2

,

where {hk,t}, k = 0, . . . , K − 1, is a set of K orthonormal data tapers; i.e.,

N−1∑
t=0

hk,thk′,t =

⎧⎪⎪⎨⎪⎪⎩
1, if k = k′;

0, otherwise

(see Thomson (1982), Percival and Walden (1993) and Riedel and Sidorenko (1995)). This

estimator is always nonnegative and is an example of Ŝ
(np)
X (·) of Equation (2) since it can

10



be reexpressed as

Ŝ
(mt)
X (f) =

N−1∑
τ=−(N−1)

ŝ
(mt)
X,τ e−i2πfτ ,

where

ŝ
(mt)
X,τ ≡

⎧⎪⎪⎨⎪⎪⎩
1
K

∑K−1
k=0

∑N−|τ |−1
t=0 hk,tXthk,t+|τ |Xt+|τ |, |τ | ≤ N − 1;

0, |τ | ≥ N.

There are two families of multitapers in wide use. Thomson (1982) proposed use of tapers

based upon discrete prolate spheroidal sequences, which require specialized techniques to

compute (see Percival and Walden (1993) for details). Riedel and Sidorenko (1995) proposed

a family of sinusoidal data tapers that work quite well in most practical applications and

are approximated well by a simple formula.

The weights Sk can be computed efficiently in a manner similar to what is given in

Equation (7) for direct spectral estimators. With hk,tXt ≡ 0 for t ≥ N , we have

1

K

K−1∑
k=0

∣∣∣∣∣
2M−1∑
t=0

hk,tXte
−i2πfkt

∣∣∣∣∣
2

=
1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
t=0

hk,tXte
−i2πfkt

∣∣∣∣∣
2

= Ŝ
(mt)
X (fk) = Sk.

4 Bootstrapping Time Series

One potential use for our proposed methodology is in bootstrapping time series to assess the

sampling variability in certain statistics. Frequency domain techniques for bootstrapping

time series have been studied previously and are discussed in detail in Davison and Hinkley

(1997), Berkowitz and Kilian (2000), Härdle et al. (2003), Lahiri (2003), and references

therein. In addition, the form of frequency domain bootstrapping in which we are interested

(i.e., creating simulated series by manipulating the DFT) is essentially the same as the

method of surrogate data originally proposed by Theiler et al. (1992) for detecting nonlinear

structure in a stationary time series (see also Schreiber and Schmitz (2000), Chan and Tong

(2001), Krantz and Schreiber (2004) and references therein). In the literature cited above,
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there are several different proposals for how to do the manipulations. We will focus on one

proposed in Theiler et al. (1992) and another described by Davison and Hinkley (1997).

4.1 Alternative Frequency Domain Methods for Bootstrapping

The Theiler et al. frequency domain method consists of simply randomly reassigning the

phases in the DFT via the following steps. Given a real-valued time series X0, . . . , XN−1,

we compute its DFT

Xk =
N−1∑
t=0

Xte
−i2πkt/N , k = 0, . . . , N − 1.

Define θ0 = 0. Let θk, k = 1, . . . , �(N − 1)/2�, be a random sample from a uniform

distribution over the interval [0, 2π], where �x� refers to the largest integer that is less than

or equal to x. Additionally, if N is even, let θN/2 be a random deviate from a distribution

that assigns a probability of 1/2 to the points 0 and π. For N/2 < k ≤ N−1, let θk = −θN−k.

The simulated series is then given by the inverse DFT of {Xke
iθk}:

X̃t =
1

N

N−1∑
k=0

Xke
iθkei2πkt/N , t = 0, . . . , N − 1.

By construction, the series {X̃t} is real-valued, and the sample means and the periodograms

for {X̃t} and {Xt} are constrained to be identical.

The Davison–Hinkley frequency domain method again randomizes the phases in {Xk},

but also includes an averaging operation that modifies the amplitudes as well. Let θk,

k = 1, . . . , N − 1, be a random sample from a uniform [0, 2π] distribution, and define

Ak ≡ Xke
iθk . We then form

X̃k = 2−1/2(Ak + A∗
N−k), k = 1, . . . , N − 1.

With X̃0 = X0, the simulated series is now given by

X̃t =
1

N

N−1∑
k=0

X̃ke
i2πkt/N , t = 0, . . . , N − 1.
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By construction, the sample means for {X̃t} and {Xt} must be identical, but the peri-

odograms need not be.

For the purposes of bootstrapping, both the Theiler et al. and Davison–Hinkley methods

work reasonably well for certain processes and statistics, but can fail badly in some situations.

Davison and Hinkley (1997) stress that their method and related frequency domain methods

cannot be expected to work well unless (i) the original time series is well modeled by a

stationary Gaussian process with ‘short memory’ (i.e., with an autocovariance sequence

that does not decay to zero too slowly) and (ii) the statistic under study is a linear contrast

(see, e.g., Scheffé (1959), p. 66; in particular, the statistic must be invariant if we force a

change in the sample mean of the time series by adding a constant to all its original values).

An additional concern about the Theiler et al. and Davison–Hinkley methods is that they

yield simulated series with a circularity assumption built into them. One consequence of

this defect is that X̃0 and X̃N−1 in any simulated series of length N will tend to be close to

each other, even if X0 and XN−1 are not.

By contrast, the circulant embedding approach has several characteristics that can over-

come some – but not all – of the deficiencies in the Theiler et al. and Davison–Hinkley

methods. First, because the circulant embedding approach creates simulated series {X̃t}

of length N from a DFT involving 2N or more terms, the resulting series has a sample

mean and a periodogram that can vary from one realization to the next. In addition, the

first and last parts of the simulated series are not artificially coupled together, and, as a

consequence, the values for X̃0 and X̃N−1 are typically decoupled. We illustrate this de-

coupling in Figure 1. The top plot is a 2048 point series representing the tip velocity of

a vertically mounted thin steel beam subjected to transverse sinusoidal excitation using a

electromechanical shaker (Moon (1992); Constantine (1999)). The beam tip is mounted

between two rare earth magnets, and the opposite tip is excited close to the beam’s first
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natural mode of vibration (approximately 10 cycles per second). The excitation amplitude

was adjusted to produce (seemingly) chaotic motion. The bottom four plots show four

typical simulated series generated from the chaotic beam series using, from top to bottom,

(i) the Theiler et al. method, (ii) the Davison–Hinkley method, (iii) the circulant embed-

ding method based upon a periodogram and (iv) this same method using a WOSA estimator

formed from NB = 31 segments. For the WOSA estimator there were NS = 128 values in

each segment; the segments overlapped by 50%; and the Hanning data taper was used on

each segment. While the first and last points in the chaotic beam series are rather far apart,

the corresponding points in the Theiler et al. and Davison–Hinkley series are close to one

another. By contrast, the two series generated via circulant embedding have end points

that do not match up particularly well. To look at this aspect of the simulations more

quantitatively, we constructed a thousand simulated series for each method and computed

the sample correlation coefficient ρ̂ between the first point X̃0 and last point X̃N−1 in the

simulated series. The values of ρ̂ for each method are listed to the right of the example series

plotted in Figure 1. As expected, the end points for the Theiler et al. and Davison–Hinkley

method are highly correlated, whereas those for the two circulant embedding methods are

practically uncorrelated.

4.2 Monte Carlo Comparison of Bootstrapping Methods

To explore how well the circulant embedding method works, we conducted Monte Carlo

experiments to see how well series simulated by this method can capture the variance of

various statistics. For some statistics such as the sample variance and the unit lag sample

autocorrelation, we found the circulant embedding approach to be comparable to the Theiler

et al. and Davison–Hinkley methods. Here we report on experiments regarding two simple

statistics for which these latter two methods are – or might be – problematic. The first
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Figure 1: Time series of a beam undergoing apparently chaotic motion (top plot), along with

associated simulated series generated using, from top to bottom, the Theiler et al. method,

the Davison–Hinkley method, the circulant embedding method based upon the periodogram

and the same method based upon a WOSA estimate with NB = 31 segments (see text for

further details).
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Figure 2: Weights {at} for the Abelson–Tukey test statistic for N = 512 (see text for further

details).

statistic is the sample mean X. The rationale for considering X is that series generated by

the Theiler et al. and Davison–Hinkley methods all have a sample mean equal to X and

hence cannot be used to assess the variability in X. We also considered the Abelson–Tukey

test statistic, which is given by

T̂ ≡
N−1∑
t=0

atXt, where at =
[
t
(
1 − t

N

)]1/2

−
[
(t + 1)

(
1 − t + 1

N

)]1/2

.

The weights {at} for this statistic are plotted in Figure 2 for the case N = 512. We chose

to look at T̂ because Davison and Hinkley (1997) considered it previously in the context of

bootstrapping. As discussed in their book, T̂ is an ‘optimal’ test for trend in a time series

that operates by essentially contrasting points at the beginning of the series with those at

the end. In this context, the fact that the Theiler et al. and Davison–Hinkley methods

generate series whose end points are highly correlated might lead us to question how well

their bootstrapped samples can assess the sampling variability in T̂ .

We used the following six models as test cases in our Monte Carlo experiments:

(a) the AR(1) model Xt = 0.9Xt−1 + εt, which is one of the models used by Chan and

Tong (2001) in their study of Fourier-based methods for generating surrogate series;

(b) the AR(2) model Xt = 0.75Xt−1 − 0.5Xt−2 + εt, which has been used as a test case in

the engineering literature;
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(c) the AR(2) model Xt = 1.14Xt−1 − 0.31Xt−2 + εt, which Davison and Hinkley (1997)

determined to be a good model for a time series related to the flow of the Rio Negro

(we henceforth refer to this model as ‘Rio’);

(d) the AR(4) model Xt = .7607Xt−1 − 3.8106Xt−2 + 2.6535Xt−3 − 0.9238Xt−4 + εt, which

has been used in the engineering literature as a challenging test for spectral analysis;

(e) a fractionally differenced (FD) process with long memory parameter δ = 0.2, which

is close to a model used to describe atmospheric pressure fluctuations over the North

Pacific (Percival et al. (2001)); and

(f) an FD process with δ = 0.45, which is close to a model used to describe yearly

variations in a historical record of minima of the Nile River (Beran (1994)).

For all six models the variance of the driving white noise {εt} was set so that the process

variance was unity. Figure 3 shows the SDFs for each model (left-hand column). It should

be noted that, while the SDFs for models (a) to (d) are continuous and bounded over

f ∈ [−1/2, 1/2], those for the FD processes are approximately proportional to |f |−2δ at low

frequencies and hence have a singularity at f = 0. To the right of each SDF plot, there

is a series of length N = 512 simulated from the corresponding model using the circulant

embedding approach. For each series, we used the same set of 1024 random Gaussian

deviates to make it easier to contrast the correlation properties of the different models.

We conducted the Monte Carlo experiments in the following manner (the results of

the experiments are summarized in Table 1). For each model, we generated 250 simulated

series, each of length N = 512, using the circulant embedding method based upon the ACVS

corresponding to the known SDF. We computed X and T̂ for each simulated series and then

computed the sample variances based upon the 250 values for each statistic. The square

roots of these variances (i.e., the sample standard deviations) are shown in the bottom rows
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Figure 3: The spectral density functions (SDFs) for six models used in the Monte Carlo

experiments (left-hand column), along with one realization of length N = 512 from each

model generated by the circulant embedding method using the same set of 2N = 1024

standard Gaussian random deviates (right-hand). The SDFs are expressed in decibels; i.e.,

10 · log10(SX(f)) is plotted versus f .
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of Table 1 (marked as ‘Monte Carlo’). We take these values to be a measure of the true

variability in X and T̂ . For each simulated series, we then generated 100 bootstrap samples

for each of five implementations of the circulant embedding method, now based upon the

ACVS corresponding to an estimated SDF. The five estimated SDFs were the periodogram

and four WOSA estimates, with the latter using a Hanning data taper on segments of size

NS = 256, 128, 64 and 32 with a 50% overlap, yielding a total of, respectively, NB = 3, 7, 15

and 31 segments. For each of the five implementations, we computed both X and T̂ for each

of the 100 bootstrap estimates and then used these in turn to compute sample variances (we

also did the same for T̂ using the Theiler et al. and Davison–Hinkley methods). Finally, we

averaged these bootstrap sample variances for the 250 simulated series. The square roots of

these averages are reported in Table 1. (In fact, we replicated the entire experiment multiple

times so that we could determine how much variability there was in the numbers reported

in the table. Generally, the entries in the table changed by at most one in the last recorded

digit when the entire experiment was replicated.)

We can draw the following conclusions from our Monte Carlo experiments. With regard

to the sample mean X, circulant embedding with the periodogram tends to systematically

underestimate the actually variability; however, this scheme with the WOSA estimators

with more than NB = 3 segments does reasonably well for the ‘short memory’ processes

(AR(1), AR(2), Rio and AR(4)), but it badly underestimates the variability in the two FD

(long memory) processes. For T̂ , the five circulant embedding implementations give quite

similar results. They all capture the actual variability in T̂ reasonably well for short memory

processes. In comparison with the Theiler et al. and Davison–Hinkley methods for these

processes, they are either competitive (AR(2) case) or offer a modest improvement (AR(1),

Rio and AR(4) cases). None of the methods reported in Table 1 works well with the FD

process with δ = 0.45.
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X

method\model AR(1) AR(2) Rio AR(4) FD(0.2) FD(0.45)

periodogram 0.11 0.025 0.06 0.0057 0.057 0.09

WOSA, NB = 3 0.16 0.037 0.10 0.0060 0.081 0.12

WOSA, NB = 7 0.17 0.041 0.11 0.0061 0.083 0.12

WOSA, NB = 15 0.16 0.043 0.11 0.0062 0.080 0.11

WOSA, NB = 31 0.15 0.044 0.11 0.0066 0.073 0.09

Monte Carlo 0.19 0.045 0.12 0.0061 0.150 0.70

T̂

method\model AR(1) AR(2) Rio AR(4) FD(0.2) FD(0.45)

periodogram 5.5 2.0 4.1 1.57 3.1 4.3

WOSA, NB = 3 5.6 2.0 4.0 1.56 3.0 4.1

WOSA, NB = 7 5.6 2.1 4.2 1.56 3.0 3.9

WOSA, NB = 15 5.5 2.1 4.2 1.56 2.9 3.5

WOSA, NB = 31 5.1 2.1 4.1 1.56 2.8 3.1

Theiler et al. 4.8 2.1 3.7 1.71 2.8 3.4

Davison & Hinkley 4.7 2.1 3.7 1.72 2.8 3.4

Monte Carlo 6.1 2.1 4.4 1.61 3.4 5.9

Table 1: Standard deviations for the sample mean X and Abelson–Tukey test statistic T̂

computed via Monte Carlo experiments. The bottom rows (‘Monte Carlo’) are measures of

the actual standard deviations for each statistic, while the other rows indicate the average

standard deviation determined using various bootstrapping methods.
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The fact that the circulant embedding approach does not lead to a significant improve-

ment for the long memory FD processes is undoubtedly because nonparametric SDF esti-

mates are not reliable at frequencies close to zero for these processes. From a time domain

perspective, this failure is because these SDF estimators have a corresponding ACVS that

is finitely supported, whereas the ACVS for an FD process decays slowly to zero. In the

frequency domain, these facts translate into the SDF estimates being continuous at f = 0

whereas the true SDF is discontinuous. As a result, the WOSA estimator with a large

number of segments NB tends to have small variability – but large biases – close to zero

frequency, whereas the periodogram has small bias but large variability in that region. For

the short memory processes, the WOSA estimator can do well at estimating the SDF over

all frequencies, which seems to be the key to its superior performance over the periodogram

(tests to date indicate that lag window and multitaper estimators give results comparable

to those reported in Table 1 for the WOSA estimator if the former are adjusted to have

comparable statistical properties).

5 Conclusions

We have demonstrated that it is always possible to use the exact circulant embedding method

for simulating a time series from a Gaussian stationary process whose SDF is dictated by

an SDF estimate produced by some of the most widely used nonnegative nonparametric

estimators. Since one of the uses for spectral analysis is to generate simulated series for

a phenomenon of interest, this methodology places nonparametric estimators on an equal

footing with commonly used parametric estimators, for which exact simulations can be ob-

tained using the underlying parametric model; however, it should be noted that, if the

parametric model has relatively few parameters compared to the sample size N , then the
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parametric method can generate individual realizations faster than the circulant embedding

method (for autoregressive models of order p, the computational burden required for each

simulation is O(Np) as compared to O(N · log2(N)) for circulant embedding). Nonetheless,

because the circulant embedding method is based upon the DFT and hence can be imple-

mented efficiently using a fast Fourier transform algorithm, individual simulations can be

computed rapidly. For example, using C code called from S-Plus running under Red Hat

Linux on a 2.6 gigahertz Pentium 4 processor, we were able to generate individual series of

length N = 2048 similar to the ones in the bottom two rows of Figure 1 in approximately

5.5 milliseconds.

We have also shown that simulations produced by circulant embedding can be used –

with some caution – for bootstrapping certain statistics and that this method performs well

for statistics such as the sample mean for which other proposed frequency domain simula-

tion techniques automatically fail. The main cautionary notes are that (i) the time series

under study must not exhibit marked departures from Gaussianity (a point as emphasized

by Davison and Hinkley (1997)) and (ii) the series cannot exhibit long memory. In addition,

our proposed method seems to offer some modest improvements for deducing the sampling

properties of statistics that are handled reasonably well by other frequency domain simula-

tion techniques. Full exploration of the bootstrapping potential of our proposed method is

a topic for future research.

6 Software Availability

The circulant embedding approach described in this paper has been implemented in the

S-Plus language. Readers should contact the authors if they are interested in obtaining

this software.
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