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Abstract

Circulant embedding is a technique that has been used to generate realizations from
certain real-valued Gaussian stationary processes. This technique has two potential
advantages over competing methods for simulating time series. First, the statistical
properties of the generating procedure are exactly the same as those of the target
stationary process. Second, the technique is based upon the discrete Fourier trans-
form and hence is computationally attractive when this transform is computed via
a fast Fourier transform (FFT) algorithm. In this paper we show how, when used
with a standard ‘powers of two’ FFT algorithm, circulant embedding can be readily
adapted to handle complex-valued Gaussian stationary processes.
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1 Introduction

Complex-valued Gaussian stationary processes are used extensively as models
for time series in the physical and engineering sciences. Specific applications
include time series of (i) reverberation measurements recorded in an under-
water environment [10,16], (ii) passive radar returns from the ionosphere [17]
and (iii) ultrasound measurements of blood flow [8]. One reason that such
models are of interest is that they can be used to generate realistic simulated
time series for studying signal processing algorithms. This paper considers the
problem of how to generate exact realizations from a fully specified complex-
valued Gaussian stationary process, where the qualifier ‘exact’ means that the
statistical properties of the process generating the simulated series and of the
specified process are theoretically identical.

Many different schemes for simulating stationary processes have been dis-
cussed in the literature (see [12,15,18] and references therein). Some of these
schemes are computationally efficient, but yield realizations whose statisti-
cal properties are only approximately the same as the desired specified pro-
cess. There are two commonly used exact methods for simulating real-valued
Gaussian stationary processes. The first method is based upon the Cholesky
decomposition, but this scheme requires O(N2) numerical operations to gen-
erate each time series of length N and hence is computationally inefficient
when compared to certain approximate schemes [12]. The second method is
known as circulant embedding [5,7,12,19]. This method is less widely known
than the Cholesky decomposition, but, when applicable, has the advantage
of being based upon the discrete Fourier transform (DFT), which can be ef-
ficiently computed via a fast Fourier transform (FFT) algorithm and hence
needs only O(N log2(N)) numerical operations for each generated series. Cir-
culant embedding has been studied extensively for real-valued Gaussian sta-
tionary processes. The purpose of this paper is to show that, with a rather
simple modification, this method can be adapted to handle complex-valued
processes in conjunction with a standard ‘powers of two’ FFT algorithm.

The remainder of this paper is organized as follows. In Section 2 we present
the basic ideas behind circulant embedding and summarize how it has been
used to generate exact realizations of real-valued Gaussian stationary pro-
cesses. We discuss how this method can adapted to work with complex-valued
processes in Section 3. We present a small Monte Carlo study in Section 4 to
demonstrate that the recipe does indeed generate realizations with the cor-
rect statistical properties. We conclude with a small discussion in Section 5.
For completeness, Appendix A contains a proof that the procedure given in
Section 3 does generate simulations with the correct statistical properties.
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2 Background on Circulant Embedding for Real-Valued Processes

Suppose that we want to generate a realization of X = [X0, X1, . . . , XN−1]
T ,

which is a column vector of length N containing a portion of a real-valued
Gaussian stationary process {Xt, t ∈ Z} with zero mean and autocovariance
sequence (ACVS) {sX,τ , τ ∈ Z}, where Z is the set of all integers; here

sX,τ = cov {Xt+τ , Xt} = E{Xt+τXt},

where cov {Xt+τ , Xt} denotes the covariance between the real-valued random
variables (RVs) Xt+τ and Xt, and E{·} is the expectation operation. By defi-
nition the covariance matrix ΣX for X has cov {Xj, Xk} as its (j, k)th element,
where 0 ≤ j, k ≤ N − 1. This matrix is Toeplitz because it has the same value
along any diagonal and is symmetric because cov {Xj, Xk} = cov {Xk, Xj}.

The key idea behind circulant embedding is to find another real-valued zero
mean Gaussian stationary process, say {Yt}, such that, for some M > N , the
RVs in Y = [Y0, Y1, . . . , YM−1]

T have a covariance matrix ΣY that contains
ΣX as its upper left-hand submatrix and that is circulant; i.e., the vectors
[Y0, Y1, . . . , YN−1]

T and X have the same covariance matrix, and the jth row
of ΣY can be obtained by circularly shifting the zeroth row j units to the
right. The reason for seeking a circulant embedding is the fact that, if C is an
arbitrary M × M circulant matrix, then we can write C = FHΛF , where F
is an M × M unitary matrix whose (j, k)th entry is exp(−i2πjk/M)/

√
M ; Λ

is a diagonal matrix; and FH is the Hermitian transpose of F [1]. Thus F is
the eigenvector matrix for any circulant matrix, while the diagonal elements
of Λ are the associated eigenvalues. Since FFH = I because F is unitary, it
follows that FΣYFH = Λ, where now Λ has nonnegative entries because all
covariance matrices must be nonnegative definite. This implies that FY has
Λ as its covariance matrix and hence can be readily simulated [7]. To within
a scaling factor, FY is the same as the DFT of Y, and the diagonal elements
of Λ are the DFT of the zeroth row of ΣY. Once the DFT of Y has been
simulated, we can take its inverse DFT to form a simulation of Y, after which
we can extract the first N values of the simulated Y to obtain a realization
of X. If M is chosen to be a product of small integers (e.g., a power of two),
the inverse DFT can be efficiently computed using an FFT algorithm.

In general, in order to generate a time series of length N , the smallest value
to which we can set M is 2N − 2, a choice that is referred to as a minimal
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embedding [7]. To see this, note that

ΣX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sX,0 sX,1 · · · sX,(N−2) sX,(N−1)

sX,1 sX,0 · · · sX,(N−3) sX,(N−2)

...
...

. . .
...

...

sX,N−2 sX,N−3 · · · sX,0 sX,1

sX,N−1 sX,N−2 · · · sX,1 sX,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to have ΣX embedded in the upper left-hand corner of ΣY, the first N
values in the zeroth row of ΣY must be equal to the zeroth row of ΣX, while the
last N −1 values must contain – in reverse order – the last N −1 values in the
zeroth column of ΣX, i.e., sX,N−1, sX,N−2, . . . , sX,1; however, the last element
in the zeroth row of ΣX is already sX,N−1, so we can satisfy our requirement
by appending sX,N−2, . . . , sX,1 to the existing elements in the zeroth row of
ΣX. This leads us to the (2N − 2) × (2N − 2) embedding matrix

ΣY =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sX,0 sX,1 · · · sX,N−2 sX,N−1 sX,N−2 · · · sX,1

sX,1 sX,0 · · · sX,N−3 sX,N−2 sX,N−1 · · · sX,2

...
...

. . .
...

...
...

. . .
...

sX,2 sX,3 · · · sX,N−2 sX,N−3 sX,N−4 · · · sX,1

sX,1 sX,2 · · · sX,N−1 sX,N−2 sX,N−3 · · · sX,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

The one difficulty we can experience with a minimal embedding is that the
right-hand side of Equation (1) might not be a valid covariance matrix because
its construction does not guarantee that it is positive semidefinite. There ex-
ist certain stationary processes for which it is known that (1) is not positive
semidefinite for certain sample sizes N , but there are also other processes for
which (1) is guaranteed to be positive semidefinite for all sample sizes [4,7,11];
however, if we are allowed to increase N , we can find a corresponding ΣY

that is a valid covariance matrix for all stationary processes [6,7]. It is easy to
determine if ΣY for a particular stationary process and choice of N is positive
semidefinite. We just need to take the DFT of the first row of ΣY and check to
see if all its values are nonnegative (see steps (1) and (2) of the recipe presented
in the next section). In cases where ΣY is positive semidefinite, circulant em-
bedding thus provides us an efficient means of generating realizations from a
real-valued Gaussian stationary process (see [7,19] for details).
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3 Adaptation to Complex-Valued Processes

Suppose now that X contains a portion of a complex-valued Gaussian station-
ary process with zero mean and ACVS {sX,τ , τ ∈ Z}, where

sX,τ = cov {Xt+τ , Xt} = E{Xt+τX
∗
t },

(in the above X∗
t is the complex conjugate of Xt). The covariance matrix ΣX

for X is now a Hermitian Toeplitz matrix; i.e., ΣH
X = ΣX. As in the case of a

real-valued process, if we can find another complex-valued zero mean station-
ary process {Yt} such that Y = [Y0, Y1, . . . , YM−1]

T has a circulant covariance
matrix with ΣX embedded in it, then the DFT of Y has a diagonal covariance
matrix and provides a computationally efficient method for generating real-
izations of X. In contrast to the real-valued case, the smallest value to which
we can set M is in general 2N − 1 rather than 2N − 2. To see this, note that

ΣX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sX,0 s∗X,1 · · · s∗X,(N−2) s∗X,(N−1)

sX,1 sX,0 · · · s∗X,(N−3) s∗X,(N−2)

...
...

. . .
...

...

sX,N−2 sX,N−3 · · · sX,0 s∗X,1

sX,N−1 sX,N−2 · · · sX,1 sX,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to have ΣX embedded in its upper left-hand corner, the last N − 1
values in the zeroth row of ΣY must contain – in reverse order – the last N −1
values in the zeroth column of ΣX. This requirement dictates that the smallest
that ΣY can be is a (2N − 1) × (2N − 1) matrix taking the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sX,0 s∗X,1 · · · s∗X,N−2 s∗X,N−1 sX,N−1 sX,N−2 · · · sX,1

sX,1 sX,0 · · · s∗X,N−3 s∗X,N−2 s∗X,N−1 sX,N−1 · · · sX,2

...
...

. . .
...

...
...

...
. . .

...

s∗X,2 s∗X,3 · · · sX,N−1 sX,N−2 sX,N−3 sX,N−4 · · · s∗X,1

s∗X,1 s∗X,2 · · · s∗X,N−1 sX,N−1 sX,N−2 sX,N−3 · · · sX,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The fact that 2N − 1 is odd is inconvenient for use with a standard ‘powers of
two’ FFT algorithm. Note, however, that, if sX,N−1 happens to be real-valued
so that s∗X,N−1 = sX,N−1, then ΣY can reduced down to a (2N − 2)× (2N − 2)

5



matrix of the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sX,0 s∗X,1 · · · s∗X,N−2 sX,N−1 sX,N−2 · · · sX,1

sX,1 sX,0 · · · s∗X,N−3 s∗X,N−2 sX,N−1 · · · sX,2

...
...

. . .
...

...
...

. . .
...

s∗X,2 s∗X,3 · · · sX,N−2 sX,N−3 sX,N−4 · · · s∗X,1

s∗X,1 s∗X,2 · · · s∗X,N−1 sX,N−2 sX,N−3 · · · sX,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In general, sX,N−1 is not real-valued, but, when it is not, we can force this
desirable condition by modulating {Xt}. This is based upon the fact that, if
{Xt} is a zero mean stationary process with ACVS {sX,τ}, then X̃t = Xte

−i2πνt

defines a similar process with an ACVS dictated by s̃X,τ = sX,τe
−i2πντ . If we

express sX,N−1 in polar notation as |sX,N−1|eiφ and let ν = φ
2(N−1)π

, then {X̃t}
has an ACVS such that s̃X,N−1 is real-valued because

s̃X,N−1 = sX,N−1e
−i2πν(N−1) = |sX,N−1|eiφe−i2π φ

2(N−1)π
(N−1) = |sX,N−1|.

The scheme then is to simulate the modulated process {X̃t} and then to
demodulate the simulation to obtain the desired simulated X. This leads to
the following recipe for use with a ‘powers of two’ FFT algorithm.

(1) Let M be any power of two such that M ≥ 2N − 2. If sX, M
2

is real-

valued, let ν = 0; if not, express sX, M
2

in polar notation as |sX, M
2
|eiφ, and

let ν = φ
Mπ

. Define s̃X,τ = sX,τe
−i2πντ , and form the sequence

s̃X,0, s̃
∗
X,1, . . . , s̃

∗
X, M

2
−1

, s̃X, M
2
, s̃X, M

2
−1, . . . , s̃X,1. (2)

Compute the DFT of the sequence displayed above:

Sk =

M
2
−1∑

τ=0

s̃∗X,τe
−i2πkτ/M +

M−1∑
τ=M

2

s̃X,M−τe
−i2πkτ/M , (3)

k = 0, 1, . . . , M − 1. By construction, Sk must be real-valued.
(2) Check that Sk ≥ 0 for all k, which is required for the embedding matrix

to be positive semidefinite. If this nonnegativity condition is not satisfied,
there are two straight-forward recourses, one of which we assume to be
taken before going to step (3). The first is to increase M . In theory we can
obtain nonnegative Sk’s by making M large enough [6,7]; however, there
is no guarantee that this can be done without making M impractically
large. The second recourse is to set any negative Sk’s to zero, in which
case the realizations will only have approximately the correct statistical
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properties [19]. If we define S+
k = max{Sk, 0}, the quality of approxima-

tion can be quantified by comparing the ACVS of the process generating
the realizations, namely,

s̃′X,τ =
1

M

M−1∑
k=0

S+
k ei2πkτ/M , τ = 0, . . . ,

M

2
,

to the corresponding parts of the target ACVS s̃X,τ .
(3) Let Z0, . . . , Z2M−1 be a random sample of 2M standard real-valued Gaus-

sian RVs; i.e., the Zk’s are uncorrelated, and their means and variances
are, respectively, zero and unity. Compute the complex-valued sequence

Ỹk = (Z2k + iZ2k+1)

√
Sk

2M
, k = 0, . . . , M − 1.

(4) Finally use the DFT to compute the complex-valued sequence

Ỹt =
M−1∑
k=0

Ỹke
−i2πkt/M , t = 0, . . . , M − 1.

Let Yt = Ỹte
i2πνt. The desired simulation of X is given by [Y0, . . . , YN−1]

T .

A proof that the RVs Y0, . . . , YN−1 have exactly the same statistical properties
as X0, . . . , XN−1 is given in Appendix A.

Two notes about this recipe are in order. First, to generate a second real-
ization, we need only repeat steps (3) and (4), so multiple realizations can

be easily generated once the weights
√

Sk

2M
have been determined. Second, we

could have defined Ỹk in step (3) to be (Z2k + iZ2k+1)
√

MSk

2
, in which case

step (4) would need the inverse DFT rather than the DFT to generate the
realizations. The DFT is preferred here because it does not involve a multi-
plication by 1/M and hence can be computed somewhat faster.

4 Examples

As an example, let us consider a complex-valued Gaussian stationary process
that is constructed by summing together a real-valued Gaussian fractionally
differenced (FD) process and a complex demodulated FD process (the two FD
processes are taken to be pairwise uncorrelated). By definition an FD process
that is dictated by the parameters 0 < δ < 1

2
and σ2

ε > 0 is stationary with a
strictly positive ACVS given by

sδ,τ =
σ2

ε sin(πδ)Γ(1 − 2δ)Γ(τ + δ)

πΓ(τ + 1 − δ)
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(see [2] for details). The process variance is given by sδ,0, for which the above
expression reduces somewhat to

sδ,0 =
σ2

ε Γ(1 − 2δ)

Γ2(1 − δ)
.

Once sδ,0 has been computed, the remaining part of the ACVS can be com-
puted easily using the recursion

sδ,τ = sδ,τ−1
τ + δ − 1

τ − δ
, τ = 1, 2, . . . .

The constructed complex-valued process {Xt} has an ACVS given by

sX,τ = s0.45,τ + ei2πf0τs0.3,τ , (4)

where f0 = 0.12121, and σ2
ε was set for the two FD processes in such a way that

s0.45,0 = 1 and s0.3,0 = 4, thus yielding sX,0 = 5. The rationale for considering
this example is that it has a slowly decaying ACVS, and use of a Cholesky
decomposition to generate simulations is computationally expensive [13]. The
corresponding spectral density function S(f), f ∈ [−1

2
, 1

2
], for {Xt} diverges

to infinity as f → 0 and f → f0, but these singularities are integrable and
similar in form to those occurring in Gegenbauer processes [9].

Figure 1 summarizes the results of computer experiments using {Xt}. Plot (a)
shows the true ACVS for lags τ = 0, 1, . . . , 512 (the thick and thin curves
denote, respectively, the real and imaginary parts). Taking N = 513 and

M = 1024, we formed the spectral weights
√

Sk

2M
, k = 0, 1, . . . , M−1, and these

are shown in (e). Plots (c) and (d) show, respectively, the real and imaginary
parts of one realization generated via the circulant embedding method. We
generated 10, 000 such realizations and computed an unbiased estimate of the
ACVS from each realization. Plot (b) shows the average of all 10, 000 ACVS
estimates, which is virtually indistinguishable from the true ACVS in (a). The
root mean square difference between the true ACVS sX,τ and its averaged
estimate ŝX,τ , i.e.,

(
1

513

512∑
τ=0

|ŝX,τ − sX,τ |2
) 1

2

,

is slightly less than 0.01. This experiment thus supports the claim that the
circular embedding is an exact method.
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As a second example, let us consider a complex-valued Gaussian stationary
process with a Gaussian-shaped ACVS, namely,

sX,τ = 5e−0.005τ2+i2πf0τ , (5)

where f0 is as before. This ACVS is similar to ones that have been used
to model radar clutter noise and Doppler measurements of blood flow [14].
Figure 2 summarizes the computer experiments for this process and is orga-
nized like Figure 1 (the theoretical and estimates ACVSs are only shown for
τ = 0, . . . , 64 because these are virtually zero for τ > 64). For this example,
four of the Sk’s were negative, but these values were numerically very close to
zero (the most negative value was −1.8 × 10−14). We set these to zero prior
to computing the weights. The theoretical and estimated ACVSs are again
virtually the same (cf. plots (a) and (b)), and the root mean square difference
between the true and estimated ACVS estimates is now 0.015.

5 Discussion

We have shown how the circulant embedding method can be adapted to gen-
erate realizations of a complex-valued Gaussian stationary process via a stan-
dard ‘powers of two’ FFT algorithm. This method can also be adapted to han-
dle multichannel complex-valued Gaussian stationary fields using a straight-
forward extension of the techniques discussed in Chan and Wood [3]; however,
in general the device of using complex demodulation to allow us to generate
realizations with a ‘powers of two’ FFT algorithm can no longer be used in
the multichannel case. As formulated by Chan and Wood [3], the multichannel
adaptation requires that M be odd, and they suggest use of a ‘powers of three’
FFT algorithm.
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A Proofs

Here we provide a proof that the recipe stated in Section 3 generates realiza-
tions with the stated statistical properties. Note first that Sk is a real-valued
sequence because, in the summations in Equation (3), the τ = 0 and τ = M

2

terms are real-valued while the remaining M − 2 terms can be added in pairs
that are real-valued; i.e.,

s̃∗X,τe
−i2πkτ/M + s̃X,τe

−i2πk(M−τ)/M = s̃∗X,τe
−i2πkτ/M + s̃X,τe

i2πkτ/M ,

where the right-hand sum is real-valued because it is equal to its complex
conjugate.

We now show that Ỹt, t = 0, . . . , N − 1, has the same statistical properties as
X̃t, t = 0, . . . , N − 1; i.e., both sequences of RVs are Gaussian with zero mean
and with an ACVS given by s̃X,τ . We first note that

E{Ỹt} =
M−1∑
k=0

E{Ỹk}e−i2πkt/M ;

however, by definition, Yk is a linear combination of two Gaussian RVs with
mean zero, and hence E{Ỹk} = 0 also, from which we can conclude that
E{Ỹt} = 0. Next note that

cov {Ỹt+τ , Ỹt}=
M−1∑
j=0

M−1∑
k=0

E{ỸjỸ∗
k}e−i2πj(t+τ)/Mei2πkt/M

=
M−1∑
k=0

E{|Ỹk|2}e−i2πkτ/M

since, by construction, E{ỸjỸ∗
k} = 0 when j �= k. Since E{|Ỹk|2} = Sk

M
, it

follows that, for τ = 0, . . . , M
2

,

cov {Ỹt+τ , Ỹt} =
1

M

M−1∑
k=0

Ske
−i2πkτ/M =

(
1

M

M−1∑
k=0

Ske
i2πkτ/M

)∗

= s̃X,τ

since the term in the parentheses is the inverse DFT of {Sk}, and {Sk} is the
DFT of the sequence displayed in Equation (2). Since N − 1 ≤ M

2
, the desired

result follows.
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Figure Captions

Figure 1. Summary of computer experiments involving a complex-valued
Gaussian stationary process whose real and imaginary components are formed
from two pairwise uncorrelated real-valued fractionally differenced processes.
Plot (a) shows the true autocovariance sequence (ACVS) for this process,
which is defined in Equation (4). The real and imaginary parts are, respec-
tively, the thick and thin curves. Plot (b) shows an estimate of this ACVS
formed by averaging together unbiased ACVS estimates computed for 10, 000
realizations (each of length N = 513) from this process, where each realization
was formed using the circulant embedding method. Plots (c) and (d) show the
real and imaginary components of one of these realizations. Plot (e) shows the
M = 1024 spectral weights that are needed by circulant embedding method
to generate each realization.

Figure 2. As in Figure 1, but now for the complex-valued Gaussian stationary
process whose ACVS is given in Equation (5). Here the true and estimated
ACVSs are only shown out to lag τ = 64 since they are virtually zero at all
larger lags.
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