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Figure 3. Three wavelets. From left to right, we have one version of the Haar wavelet;
a wavelet that is related to the first derivative of the Gaussian probability density function
(PDF); and the Mexican hat wavelet, which is related to the second derivative of the Gaussian
PDF.
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Figure 5. Three Morlet wavelets ψ
(M)
ω0 (·). These wavelets are complex-valued, so their real

and imaginary parts are plotted using, respectively, thick and thin curves. The parameter ω0
controls the frequency of the complex exponential that is then modulated by a function whose
shape is dictated by the standard Gaussian PDF. As ω0 increases from 3 to 7, the number of
oscillations within the effective width of the Gaussian PDF increases.
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Figure 6. Step function x(·) successively taking on the values x0, x1, . . . , x15 over a parti-
tioning of the interval [a, b] into 16 equal subintervals. As defined by Equation (5), the average
value of x(·) over [a, b] is just the sample mean of all 16 xj ’s (the dashed line indicates this

average).
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Figure 8. Average daily fractional frequency deviates for cesium beam atomic clock 571
(bottom plot) and its Mexican hat CWT. The fractional frequency deviates are recorded in

parts in 1013 (a deviation of −15 parts in 1013 means that clock 571 lost about 129.6 billionths
of a second in one day with respect to the US Naval Observatory master clock to which it
was being compared). The vertical axis of the CWT plot is scale (ranging from 1 to 64 days),
while the horizontal axis is the same as on the lower plot. The CWT plot is grey-scaled coded
so that large magnitudes correspond to bright spots (regions where the plot is dark indicate
scales and days at which the clock performed well).
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Figure 10. Shifted and rescaled versions of the Haar wavelet ψ(H)(·). The plots above show

ψ
(H)

λ,t
(·), which can be used to measure how much adjacent averages of a signal x(·) over a scale

of length λ change at time t. The top row of plots shows the effect of keeping λ fixed at unity
while t is varied; in the bottom row t is fixed at zero while λ is varied.
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Figure 14. Haar DWT coefficients for clock 571 and sample ACSs.
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Figure 16. Energy analysis for clock 571 based on Haar DWT wavelet coefficients (curve)
and Haar MODWT wavelet coefficients (o’s).
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Figure 18. Haar MODWT coefficients for clock 571.
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a ∗ b0 =
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a ∗ b2 =
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Figure 24. Graphical illustration of convolution of the infinite sequences {at} and {bt}. The
left-hand plot shows two lines. The upper line is labeled at equal intervals with elements
of the infinite sequence {at}. The lower line is likewise labeled, but now with the reverse of
{bt}, i.e., {b−t} The zeroth element a ∗ b0 of the convolution of {at} and {bt} is obtained by
multiplying the at’s and bt’s facing each other and then summing. In general, the tth element
a ∗ bt is obtained in a similar fashion after the lower line has been shifted to the right by t
divisions – for example, the right-hand plot shows the alignment of the lines that yields the
second element a ∗ b2 of the convolution.
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Figure 26. Example of filtering using a low-pass filter.



  
 

  
 

     
 

........
.
........

     
 

     
 

  
 

......
..
.
........ ........

.
........

{bt} {at} {a ∗ bt}

B(·) A(·) A(·)B(·)

−8 −4 0 4 8 −8 −4 0 4 8 −8 −4 0 4 8
t t t

0

2

1

0
0.0 0.5 0.0 0.5 0.0 0.5

f f f

Figure 27. Example of filtering using a high-pass filter.
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Figure 31a. Graphical illustration of circular convolution of the finite sequences {at} and
{bt}. The left-hand plot shows two concentric circles. The outer circle is divided into N
equal arcs, and the boundaries between the arcs are labeled clockwise from the top with
a0, a1, . . . , aN−1. The inner circle is likewise divided, but now the boundaries are labeled
counter-clockwise with b0, b1, . . . , bN−1. The zeroth element a ∗ b0 of the convolution of {at}
and {bt} is obtained by multiplying the at’s and bt’s facing each other and then summing. In
general, the tth element a ∗ bt is obtained in a similar fashion after the inner circle has been
rotated clockwise by t divisions – for example, the right-hand plot shows the alignment of the
concentric circles that yields the second element a ∗ b2 of the convolution.
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Figure 31b. Graphical illustration of circular complex cross-correlation of {at} and {bt}.
The layout is similar to Figure 31a.
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Figure 42. Two small time series {X1,t} and {X2,t}, each with N = 16 values. The left-hand
plot shows X1,t versus t for t = 0, . . . , 15 as black dots, while the right-hand plot shows X2,t.
The two series differ only at the t = 13th value, for which X2,13 = −X1,13. For the record,

the 16 values for {X1,t} are 0.2, −0.4, −0.6, −0.5, −0.8, −0.4, −0.9, 0.0, −0.2, 0.1, −0.1, 0.1,
0.7, 0.9, 0.0 and 0.3.
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Figure 47. Row vectors FH
k• for the orthonormal discrete Fourier transform matrix F for

N = 16 and k = 0 to 7 (top to bottom on left-hand plot) and k = 8 to 15 (right-hand plot).
Most of the elements of F are complex-valued, so the real and imaginary components are

represented, respectively, by solid squares and open circles. Note that the elements of FH
0• and

FH
8• are real-valued and that, e.g., FH

15• = (FH
1•)

∗.
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Figure 49. Orthonormal discrete Fourier transforms for the time series in Figure 42. The
ODFTs F for {X1,t} and {X2,t} are plotted in the top row. The real and imaginary com-
ponents of the ODFTs are represented by, respectively, solid squares and open circles. The
discrete empirical power spectra corresponding to these ODFTs are shown in the bottom row.
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Figure 50. Fourier details DF,k, smooths SF,k and roughs RF,k for {X1,t} (left-hand plot

of Figure 42) for k = 0, . . . , 8 (top to bottom).
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Figure 51. Fourier details DF,k, smooths SF,k and roughs RF,k for {X2,t} (right-hand plot

of Figure 42) for k = 0, . . . , 8 (top to bottom).
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Figure 57. Row vectors WT
n• of the discrete wavelet transform matrix W based on the Haar

wavelet for N = 16 and n = 0 to 7 (top to bottom on left plot) and n = 8 to 15 (right plot).
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Figure 60. Row vectors WT
n• of the discrete wavelet transform matrix W based on the D(4)

wavelet for N = 16 and n = 0 to 7 (top to bottom on left plot) and n = 8 to 15 (right plot).
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Figure 62. Haar DWTs for the two time series in Figure 42. The DWT coefficients W are
shown in the left-hand plots (the corresponding discrete wavelet empirical power spectra are in
the right-hand plots). The thin dotted lines delineate the subvectors W1, W2, W3, W4 and
V4 (see Equation (61c); W4 is between W3 and V4 but is unlabeled due to lack of space).
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Figure 64. Haar wavelet details Dj , smooths Sj and roughs Rj of levels j = 0 to 4 for

{X1,t} (top plots) and {X2,t} (bottom). For any given j, we have Sj + Rj = X. The jth
detail can be interpreted as the difference between successive smooths or successive roughs:
Dj = Sj−1 − Sj and Dj = Rj −Rj−1.
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Figure 65. D(4) wavelet details Dj , smooths Sj and roughs Rj for {X1,t} (top plots) and

{X2,t} (bottom). Figure 64 has corresponding plots for the Haar wavelet. A comparison of

these two figures shows that the Haar and D(4) smooths S4 agree perfectly for a given time
series, which is a consequence of the fact that V4 is the same for both transforms (the roughs
R0 also agree by definition).
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Figure 73. Squared gain functions for Haar wavelet filter (upper left-hand plot), Haar scaling
filter (upper right), D(4) wavelet filter (lower left) and D(4) scaling filter (lower right). The
dotted lines mark the frequency f = 1/4, which is the lower (upper) end of the nominal
pass-band for the wavelet (scaling) filters.



G( k
N ) −→

↓2
V1

↗
X
↘

H( k
N ) −→

↓2
W1

Figure 80. Flow diagram illustrating analysis of X into W1 and V1. The time series in
the vector X of length N is circularly filtered using a wavelet filter H(·) periodized to length

N (the frequency domain form of this filter is given by {H( k
N ) : k = 0, . . . , N − 1}). All

the odd indexed values of the filtered series are used to form the vector W1 of length N/2
containing the wavelet coefficients of level j = 1 (‘↓ 2’ indicates downsampling by two); in a
similar manner, the vector V1 of length N/2 containing the scaling coefficients of level j = 1 is
obtained by downsampling the output from filtering X with the scaling filter G(·) periodized
to length N .



V1
↑2−→ G∗( k

N )

↘
+ −→ X

↗
W1

↑2−→ H∗( k
N )

Figure 83. Flow diagram illustrating synthesis of X from W1 and V1. The vector W1
of length N/2 is upsampled by two to form a vector of length N , whose contents are then

circularly filtered using the filter {H∗( k
N )} (here upsampling W1 by two means adding a zero

before each element in that vector and is indicated on the flow diagram by ‘↑ 2’). The vector
X is formed by adding the output from this filter to a similar output obtained by filtering V1

(after upsampling) with the filter {G∗( k
N )}.
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Figure 86. Magnitude squared DFT of the time series {Xt} of Equation (85) (left-hand
plot), along with the magnitude squared DFTs for the rescaled Haar scaling and wavelet

filter outputs {Ṽ1,t} and {W̃1,t} (middle plots) and the Haar scaling and wavelet coefficients

{V1,t} and {W1,t} (right-hand). Because {Xt} and its filtered versions are real-valued, the
squared magnitudes of all the DFTs are symmetric about zero, so just the values for the

nonnegative Fourier frequencies are shown. The magnitude squared DFTs for {Ṽ1,t} and

{W̃1,t} are obtained by multiplying the magnitude squared DFT for {Xt} by values picked

from the squared gain functions for {gl/
√

2} and {hl/
√

2} (these are defined by G(f)/2 and

H(f)/2 – the shapes of these functions are shown in the top row of Figure 73). Note that {Ṽ1,t}
preserves the low frequency content of {Xt} in its low frequencies, while {W̃1,t} preserves the

high frequency content of {Xt} in its high frequencies. Whereas {Ṽ1,t} and {W̃1,t} are deficient
in, respectively, high and low frequency content and hence are half-band series, the subsampled
and rescaled series {V1,t} and {W1,t} are full-band series that preserve, respectively, the low

and high frequency content of {Xt}. Whereas {V1,t} keeps the ordering of the frequencies in

{Xt}, the ordering is reversed in {W1,t}; e.g., the bulge at the high frequencies f14 = 14
32 and

f15 = 15
32 in the DFT for {Xt} appears in a reversed manner at the low frequencies f ′1 = 1

16
and f ′2 = 2

16 in the DFT for {W1,t}.
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Figure 89. Flow diagram illustrating analysis of X into W1, W2 and V2.
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Figure 90. Flow diagram illustrating synthesis of X from W1, W2 and V2.
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Figure 91. Squared gain functions for Haar {h2,l} and {g2,l} filters (upper left and right-

hand plots, respectively) and D(4) {h2,l} and {g2,l} filters (lower left and right). The dotted

lines mark the frequencies f = 1/8 and f = 1/4.



G2( k
N ) −→

↓4
V2

↗
X
↘

H2( k
N ) −→

↓4
W2

Figure 92. Flow diagram illustrating generation of W2 and V2 from X. The time series in
the vector X of length N is circularly filtered using the length N periodized version of the
j = 2 level wavelet filter {h2,l} with transfer function H2(·). All values of the filtered series

with indices t such that t + 1 mod 4 = 0 are used to form the vector W2 (‘↓ 4’ indicates
downsampling every fourth value). The N/4 elements of W2 are the wavelet coefficients of
level j = 2. Likewise, the vector V2 of length N/4 contains the scaling coefficients of level
j = 2 and is obtained by downsampling (by four) the output from filtering X with the circular

filter whose frequency domain representation is {G2(
k
N )}.
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Figure 94. Flow diagram illustrating analysis of Vj−1 into Wj and Vj , followed by synthesis
of Vj−1 from Wj and Vj .



Gj( k
N ) −→

↓2j
Vj

↗
X
↘

Hj( k
N ) −→

↓2j
Wj

Figure 96. Flow diagram illustrating generation of Wj and Vj from X. The time series

in the vector X of length N is circularly filtered using a jth level wavelet filter {hj,l} with

transfer function Hj(·), and all values of the filtered series with indices divisible by 2j are

used to form the vector Wj of length N/2j containing the wavelet coefficients of level j (‘↓ 2j ’

indicates downsampling every 2jth value); in a similar manner, the vector Vj of length N/2j

containing the scaling coefficients of level j is obtained by downsampling the output from
filtering X using the jth level scaling filter with transfer function Gj(·).
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Figure 98a. D(4) scaling {gj,l} and wavelet {hj,l} filters for scales indexed by j = 1, 2, . . . , 7

(here the individual values of the impulse response sequences are connected by lines).
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Figure 98b. LA(8) scaling {gj,l} and wavelet {hj,l} filters for scales indexed by j = 1, 2, . . . , 7

(here the individual values of the impulse response sequences are connected by lines). These
filters are defined in Section 4.8.
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Figure 99. Squared gain functions for LA(8) filters {hj,l}, j = 1, . . . , 4, and {g4,l} (these

filters are defined in Section 4.8).
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Figure 107. Squared gain functions H(D)(·) for Daubechies wavelet filters of widths L =

2, 4, . . . , 14 (right-hand column). Each H(D)(·) is the product of two other squared gain func-

tions, namely, D
L
2 (·) (left-hand column) and AL(·) (middle). The first corresponds to an L

2
order difference filter, while for L ≥ 4 the second is associated with a weighted average (i.e.,
low-pass filter).
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Figure 108a. Daubechies extremal phase scaling filters {g(ep)

l
} for L = 2, 4, . . . , 20 (values

based on Daubechies, 1992, p. 195, Table 6.1).
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Figure 108b. Daubechies wavelet filters corresponding to the extremal phase scaling filters
in Figure 108a.



l gl for D(6) gl for C(6) gl for D(8)

0 0.3326705529500827 −0.0156557285289848 0.2303778133074431
1 0.8068915093110928 −0.0727326213410511 0.7148465705484058
2 0.4598775021184915 0.3848648565381134 0.6308807679358788
3 −0.1350110200102546 0.8525720416423900 −0.0279837694166834
4 −0.0854412738820267 0.3378976709511590 −0.1870348117179132
5 0.0352262918857096 −0.0727322757411889 0.0308413818353661
6 0.0328830116666778
7 −0.0105974017850021

l gl for LA(8) gl for LA(12) gl for LA(16)

0 −0.0757657147893407 0.0154041093273377 −0.0033824159513594
1 −0.0296355276459541 0.0034907120843304 −0.0005421323316355
2 0.4976186676324578 −0.1179901111484105 0.0316950878103452
3 0.8037387518052163 −0.0483117425859981 0.0076074873252848
4 0.2978577956055422 0.4910559419276396 −0.1432942383510542
5 −0.0992195435769354 0.7876411410287941 −0.0612733590679088
6 −0.0126039672622612 0.3379294217282401 0.4813596512592012
7 0.0322231006040713 −0.0726375227866000 0.7771857516997478
8 −0.0210602925126954 0.3644418948359564
9 0.0447249017707482 −0.0519458381078751
10 0.0017677118643983 −0.0272190299168137
11 −0.0078007083247650 0.0491371796734768
12 0.0038087520140601
13 −0.0149522583367926
14 −0.0003029205145516
15 0.0018899503329007

Table 109. Coefficients for selected Daubechies scaling filters and for the coiflet scaling filter
for L = 6 (the latter is discussed in Section 4.9). The coefficients in this table are derived
from Daubechies (1992, 1993). These coefficients (and those for other {gl}) are available on
the Web site for this book (see page xiv).
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Figure 110. Example of filtering using a zero phase filter. The left-hand plot shows a time
series {Xt} with a discontinuity from t = −1 to t = 0. The solid points in the middle and
right-hand plots show the results of filtering this series with, respectively, the filters {u1,l}
(Equation (110a)) and {u2,l} (Equation (110b)), only the first of which has zero phase. The

thin curves on these two plots show the original time series. Note that the discontinuity is
spread out – but not shifted in location – using the zero phase filter {u1,l}, whereas it is spread

out and shifted forward in time using {u2,l}.
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Figure 113a. Daubechies least asymmetric scaling filters {g(la)

l
} for L = 8, 10, . . . , 20 (values

based on Daubechies, 1992, p. 198, Table 6.3, with modifications as noted in item [1] of the
Comments and Extensions to this section).
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Figure 113b. Daubechies wavelet filters corresponding to the least asymmetric scaling filters
shown in Figure 113a.
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Figure 115. Exact phase functions of shifted LA wavelet filters {hj,l}, j = 1, 2, 3 and 4

(the D(4) case is also shown, with shifts governed by setting ν = −1). The phase functions

for {hj,l} are plotted just over frequencies in the interval [1/2j+1, 1/2j ] – these intervals are

indicated by the vertical dotted lines.



L |ν| − e{gl} L |ν| − e{gl}
8 0.1536 14 −0.1615
10 0.4500 16 0.1546
12 0.1543 18 0.4471

20 0.1547

Table 118. Comparison between advances |p(H)
j | and |ν(H)

j | for Daubechies least asymmetric

wavelet filters. Since |p(H)
j |−|ν(H)

j | = |ν|−e{gl} for all scale indices j, the above indicates that

the two advances are the same when rounded to the nearest integer. To compare the advances

for the corresponding scaling filters, the tabulated values must be multiplied by 2j − 1, so the
advances diverge as j increases.
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Figure 119. Least asymmetric scaling filters {g(la)

l
} (left-hand column) and best localized

scaling filters {g(bl)

l
} (right) for L = 14, 18 and 20.
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Figure 120. Exact phase functions of shifted least asymmetric and best localized wavelet
filters (see the caption to Figure 115 and the text for details).
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Figure 121. Time shift functions (rounded to the nearest integer) corresponding to the phase
functions shown in Figure 115.
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Figure 122. Squared gain functions H(D)
j (·), j = 1, 2 and 3 (left, middle and right columns,

respectively), for Daubechies wavelet filters of widths L = 2, 4, . . . , 14 (top to bottom rows,
respectively). The two thin vertical lines in each plot delineate the nominal pass-band for the

filter. The vertical axis is in decibels (i.e., we plot 10 · log10(H
(D)
j (f)) versus f).
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Figure 123. Coiflet scaling filters {g(c)

l
} (left-hand column) and corresponding wavelet filters

{h(c)

l
} (right) of widths L = 6, 12, 18, 24 and 30 (Daubechies, 1992, p. 261, Table 8.1).
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Figure 124. Exact phase functions of shifted coiflet wavelet filters (see the caption to Fig-
ure 115 and the text for details).
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Figure 125. C(6) scaling {gj,l} and wavelet {hj,l} filters for scales indexed by j = 1, 2, . . . , 7

(see Figures 98a and 98b for similar plots of the D(4) and LA(8) filters).



 

 

 

 

 

Haar

D(4)

C(6)

LA(8)

W1 W2 W3 W4 V6

4

0

−4
4

0

−4

4

0

−4
4

0

−4
0 512 1024 1536 2048

n

Figure 126. Partial DWT coefficients W of level J0 = 6 for ECG time series using the Haar,
D(4), C(6) and LA(8) wavelets. The elements Wn of W are plotted versus n = 0, . . . , N−1 =
2047. The six vertical dotted lines delineate the seven subvectors of W, namely, W1, . . . ,W6
and V6 (W5 and W6 are not labeled at the top of the figure due to lack of space).
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Figure 127. LA(8) DWT coefficients for ECG time series (data courtesy of Gust Bardy and
Per Reinhall, University of Washington).
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Figure 128. Normalized partial energy sequences. The left-hand plot has the NPESs for the
original time series (thick dashed curve), the ODFT (dotted) and the Haar DWT (solid). The
right-hand plot shows portions of the NPESs for the Haar DWT (solid curve again) and the
D(4) DWT (thin dashed). The NPESs for the C(6) and LA(8) DWTs are virtually identical
to the D(4) NPES.
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Figure 130. Haar DWT multiresolution analysis of ECG time series (see text for details).
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Figure 131. D(4) DWT multiresolution analysis of ECG time series (see text for details).
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Figure 132. C(6) DWT multiresolution analysis of ECG time series (see text for details).
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Figure 133. LA(8) DWT multiresolution analysis of ECG time series (see text for details).



L L′1 L′2 L′3 L′4 L′j≥5

2 0 0 0 0 0
4 1 2 2 2 2
6 2 3 4 4 4
8 3 5 6 6 6
10 4 6 7 8 8
12 5 8 9 10 10
14 6 9 11 12 12
16 7 11 13 14 14
18 8 12 14 15 16
20 9 14 16 17 18

Table 136. Number L′j of boundary coefficients in Wj or Vj based on a wavelet filter of

width L (here we assume L′j ≤ Nj , where Nj = N/2j is length of Wj or Vj). The boundary

coefficients are those that are influenced by boundary conditions at least to some degree.



L γ̄
(H)
1 , γ

(H)
1 γ̄

(H)
2 , γ

(H)
2 γ̄

(H)
3 , γ

(H)
3 γ̄

(H)
4 , γ

(H)
4 γ̄

(H)
j≥5, γ

(H)
j≥5

8 1,2 3,2 3,3 3,3 3,3
10 2,2 3,3 4,3 4,4 4,4
12 2,3 4,4 5,4 5,5 5,5
14 2,4 4,5 6,5 6,6 6,6
16 3,4 6,5 7,6 7,7 7,7
18 4,4 6,6 7,7 8,7 8,8
20 4,5 7,7 8,8 9,8 9,9

Table 137a. Number of LA boundary wavelet coefficients at the beginning and the end of

T −γ
(H)
j Wj (assuming L′j ≤ Nj). The number at the beginning is given by γ̄

(H)
j , and the

number at the end, by γ
(H)
j . Note that γ̄

(H)
j + γ

(H)
j = L′j , which is the total number of

boundary coefficients (see Table 136).

L γ̄
(G)
1 , γ

(G)
1 γ̄

(G)
2 , γ

(G)
2 γ̄

(G)
3 , γ

(G)
3 γ̄

(G)
4 , γ

(G)
4 γ̄

(G)
J0≥5, γ

(G)
J0≥5

8 2,1 3,2 4,2 4,2 4,2
10 2,2 3,3 3,4 4,4 4,4
12 3,2 5,3 5,4 6,4 6,4
14 4,2 6,3 7,4 8,4 8,4
16 4,3 6,5 7,6 8,6 8,6
18 4,4 6,6 7,7 7,8 8,8
20 5,4 8,6 9,7 9,8 10,8

Table 137b. As in Table 137a, but now for the LA scaling coefficients. Again we have

γ̄
(G)
J0

+ γ
(G)
J0

= L′J0
, where L′J0

is given in Table 136.
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Figure 138. Four circularly advanced subvectors of the LA(8) DWT for the ECG time
series (cf. Figure 127). The DWT coefficients plotted between the two thick vertical lines
for a given subvector are unaffected by circularity, while those outside of the lines are the
boundary coefficients. The number of plotted boundary coefficients agrees with the first rows
of Tables 137a and 137b.
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Figure 140. Portion of the LA(8) DWT multiresolution analysis for the ECG time series (the
full analysis is shown in Figure 133). The thick vertical lines delineate the boundary regions
in the details Dj and smooth S6 (i.e., those parts influenced to some degree by circularity).
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Figure 142. LA(8) DWT multiresolution analysis of ECG time series using reflection bound-
ary conditions (cf. Figure 133).
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Figure 150. Row vectors of the discrete wavelet transform matrix based on the D(4) wavelet
as defined in Bruce and Gao (1996a) – cf. Figure 60.



{hl} ←→ H(·) {gl} ←→ G(·)
hl = (−1)lgL−1−l gl ≡ (−1)l+1hL−1−l

H(f) = −e−i2πf(L−1)G( 1
2 − f) G(f) = e−i2πf(L−1)H( 1

2 − f)∑
l hl = H(0) ≡ 0

∑
l gl = G(0) =

√
2∑

l h
2
l ≡ 1

∑
l g

2
l = 1∑

l hlhl+2n ≡ 0, n �= 0
∑

l glgl+2n = 0, n �= 0∑
l glhl+2n = 0

H(f) ≡ |H(f)|2 G(f) ≡ |G(f)|2

H(f) +H(f + 1
2 ) = 2 G(f) + G(f + 1

2 ) = 2

G(f) +H(f) = 2

W1,t ≡
∑

l hlX2t+1−l mod N V1,t ≡
∑

l glX2t+1−l mod N

Wj,t ≡
∑

l hlVj−1,2t+1−l mod Nj−1 Vj,t ≡
∑

l glVj−1,2t+1−l mod Nj−1

h1,l ≡ hl, H1(f) ≡ H(f) g1,l ≡ gl, G1(f) ≡ G(f)

Hj(f) ≡ H(2j−1f)
j−2∏
l=0

G(2lf) Gj(f) ≡
j−1∏
l=0

G(2lf)

Hj(f) = H(2j−1f)Gj−1(f) Gj(f) = G(2j−1f)Gj−1(f)

{hj,l} ←→ Hj(·) {gj,l} ←→ Gj(·)
∑

l hj,l = Hj(0) = 0
∑

l gj,l = Gj(0) = 2j/2

∑
l h

2
j,l = 1

∑
l g

2
j,l = 1

∑
l hj,lhj,l+2jn = 0, n �= 0

∑
l gj,lgj,l+2jn = 0, n �= 0∑

l gj,lhj,l+2jn = 0

Hj(f) ≡ |Hj(f)|2 Gj(f) ≡ |Gj(f)|2

Wj,t =
∑

l hj,lX2j(t+1)−1−l mod N Vj,t =
∑

l gj,lX2j(t+1)−1−l mod N

Table 154. Key relationships involving wavelet and scaling filters. Because hl = gl = 0 for
all l < 0 and l ≥ L, summations involving hl or gl can be taken to range from either l = 0
to l = L − 1 or over all integers; likewise, summations involving hj,l or gj,l can range either

from l = 0 to l = Lj − 1 or over all integers (recall that Lj ≡ (2j − 1)(L − 1) + 1 and that

Nj ≡ N/2j).
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Figure 161. LA(8) DWTs of level J0 = 4 (top five rows, first two columns) and corresponding

multiresolution analyses (last two columns) for a time series X and its circularly shift T 5X
(bottom row of plots). A comparison of the first and second columns shows that circularly
shifting a time series can yield substantial changes in its DWT; likewise, the third and fourth
columns indicate the same is true for the corresponding MRAs. This figure should be compared
with Figure 181, which uses the MODWT in place of the DWT.
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Figure 162. Level J0 = 4 basis vectors used in the LA(8) DWT to produce the wavelet
coefficients W4,j , j = 4, . . . , 7 (thick curves, respectively, from left to right in both rows of

plots), along with a ‘bump’ time series X (thin curves in top row of plots) and T 5X (thin
curves, bottom row). The inner product between a plotted basis vector and a time series yields
the wavelet coefficient labeled at the top of the figure.



G̃( k
N ) −→ Ṽ1 −→ G̃∗( k

N )

↗ ↘
X + −→ X
↘ ↗

H̃( k
N ) −→ W̃1 −→ H̃∗( k

N )

Figure 169. Flow diagram illustrating analysis of X into the MODWT wavelet and scaling

coefficients W̃1 and Ṽ1 of first level, followed by the synthesis of X from W̃1 and Ṽ1.



G̃(2j−1 k
N ) −→ Ṽj −→ G̃∗(2j−1 k

N )

↗ ↘
Ṽj−1 + −→ Ṽj−1

↘ ↗
H̃(2j−1 k

N ) −→ W̃j −→ H̃∗(2j−1 k
N )

Figure 175. Flow diagram illustrating analysis of Ṽj−1 into W̃j and Ṽj , followed by the

synthesis of Ṽj−1 from W̃j and Ṽj .
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Figure 181. Bottom six rows as in Figure 161, with MODWT replacing DWT. The top row
shows the discrete wavelet empirical power spectra (first two columns) and a corresponding
quantity based upon level j = 1, . . . , 7 MODWT details (last two columns) – see text for
details.
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Figure 183. MODWT wavelet analysis of ECG time series using LA(8) wavelet. The above
should be compared to Figure 127 for the corresponding DWT analysis (see text for details).
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Figure 184. MODWT multiresolution analysis of ECG time series using LA(8) wavelet (see
text for details). Figure 133 shows the corresponding DWT analysis.
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Figure 186. LA(8) MODWT multiresolution analysis for Crescent City subtidal variations
(see text for details). This series is measured in centimeters.
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Figure 187. Expanded view of 1985 and 1986 portion of Figure 186.
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Figure 190. Rotated cumulative variance plots for subtidal sea level variations at physical
scales τ2 ∆t = 1 day (bottom plot) and τ7 ∆t = 32 days (top).
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Figure 191. Demonstration of zero phase property of MODWT details. The thick curve in
each plot is a 96 day portion of the Crescent City series starting at the beginning of 1986.

The thin curves (from top to bottom) are the LA(8) MODWT detail D̃5 for the original time

series X, the LA(8) DWT detail D5 for T 12X (the time series delayed 12 data values) and

the LA(8) DWT detail D5 for T 8X (the time series delayed 8 data values). The physical
scale associated with these details is τ5 ∆t = 8 days; i.e., the details should be associated with
changes of averages on a scale of 8 days (this is the distance between minor tick marks on the
horizontal axis).
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Figure 192. Level J0 = 4 MODWT multiresolution analysis of Nile River minima (in meters)
using the Haar wavelet filter.
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Figure 194. Level J0 = 6 MODWT multiresolution analysis using LA(8) wavelet of vertical
shear measurements (in inverse seconds) versus depth (in meters). This series was collected
and supplied by Mike Gregg, Applied Physics Laboratory, University of Washington.
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Figure 195. Expanded view of details series in MRA shown in Figure 194.
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Figure 196. Comparison of DWT smooths S6 (top four series) and MODWT smooths S̃6
(bottom four) for the ECG time series using, from top to bottom within each group, the Haar,
D(4), C(6) and LA(8) wavelet filters. The thick vertical lines mark the boundary regions of
the smooths, i.e., the parts of the smooths that are influenced (at least to some degree) by the
assumption of circularity.
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∑
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Table 202. Key relationships involving MODWT wavelet and scaling filters (the conventions
in Table 154 for limits on sums over l apply here too).
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Figure 210a. Flow diagram illustrating the analysis of X into W2,0, W2,1, W2,2 and W2,3
(sequency ordering). In the above recall that N1 ≡ N/2.
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Figure 210b. Flow diagram illustrating the analysis of X into W2,0,W2,1,W
′
2,2 and W′

2,3
(natural ordering).
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Figure 211. Illustration of effect in the frequency domain of filtering with ideal low- and high-
pass filters G(·) and H(·), followed by downsampling (this figure parallels the flow diagram in
Figure 210a). The magnitude squared DFT for the input X of length N is assumed to roll off
linearly as f sweeps from 0 up to the Nyquist frequency. Filtering X with either G(·) or H(·)
yields a half-band series that, after downsampling, becomes a full-band series (either W1,0 or

W1,1, each with N/2 points). A second round of filtering and downsampling yields four new

full-band series, namely, W2,n, n = 0, 1, 2 and 3. Each W2,n is of length N/4 and is related to
a single quarter-band in X. Note that, each time that we create a half-band series by filtering
with H(·), the subsequent downsampling creates a full-band series whose frequency content
is reversed with respect to that of the half-band series; on the other hand, filtering with G(·)
causes no such reversal (for an explanation of the reversal induced by H(·), see Section 4.4).
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Figure 212a. Flow diagram illustrating the analysis of X into W3,0, . . . ,W3,7 (recall that

Nj ≡ N/2j).
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Figure 212b. Flow diagram illustrating the analysis of X into W3,0, W3,1, W2,1 and W1,1,
which is identical to a partial DWT of level J0 = 3.
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Figure 213. Flow diagram illustrating the analysis of X into W2,0, W3,2, W3,3 and W1,1,
an arbitrary disjoint dyadic decomposition.
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Figure 216. Illustration of the vectors cj,n for the sequency ordered WP table for levels

j = 1, 2 and 3 (0 or 1 indicate use of, respectively, a scaling (low-pass) or wavelet (high-pass)
filter). Note that, if, in going from a parent node at level j− 1 to a child at level j, we require
use of G(·), then we append a zero to the parent’s cj−1,�n

2 � to obtain the child’s cj,n; on the

other hand, if we use H(·), then we append a one. Note also that, as we sweep from left to
right across either row j = 2 or 3 and pick out the last element of each cj,n, we obtain the

pattern ‘0, 1, 1, 0’ or this pattern followed by a replicate (for general j ≥ 2, collecting the last

elements of cj,n, n = 0, . . . , 2j − 1, will yield 2j−2 replications of ‘0, 1, 1, 0’).
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Figure 217. Squared gain functions |Uj,n(·)|2 for j = 3 and n = 0, . . . , 7 based upon the

LA(8) wavelet and scaling filters. The nominal ‘ideal’ pass-bands are marked by vertical lines.
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Figure 218. Row vectors for an N = 16 DWPT of level J = 4 constructed using the Haar
wavelet filter. This transform is identical to what is known as the Walsh transform. The basis
vectors are displayed in sequency ordering so that the inner product of (the transpose of) the
nth row and a time series X would yield the single element in the coefficient vector W4,n.
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Figure 219. Path of the Ulysses spacecraft. After its launch, the spacecraft traveled in the
plane of the Earth’s orbit to near Jupiter, whose gravitational field then flung it into polar
orbit about the Sun. The segment of data plotted at the bottom of Figure 222 was collected
as the spacecraft traveled from heliographic latitude 43◦ S to 62◦ S south of the Sun – in
changing latitudes, the spacecraft also decreased its distance from the Sun. After collecting
the data of interest here, the spacecraft continued on its solar polar orbit, but now travelling
north of the Sun. (Illustration courtesy of T. Horbury, Queen Mary and Westfield College,
London.)
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Figure 220. DWPT coefficients W of level j = 4 for solar physics time series using the Haar,
D(4), C(6) and LA(8) wavelets. The elements Wm of W are plotted versus m = 0, . . . , N−1 =
4095. The 15 vertical dotted lines delineate the 16 subvectors of W, namely, from left to right,
W4,n, n = 15, 14, . . . , 0.
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Figure 222. Level j = 4 LA(8) DWPT coefficients for solar physics time series (see text for
details).
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Figure 224. Haar DWPT coefficients Wj,n of levels j = 1, 2 and 3 for a time series X of
length N = 8. The series X was constructed from a linear combination of three basis vectors,
one from each of the three levels (see Equation (224)). In the above, the DWPT coefficients
corresponding to the vectors used in formation of X are underlined (one each in W1,0, W2,3
and W3,4).
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Figure 225. Cost table for the WP table shown in Figure 224. The entries in the above are

the values of M(Wj,n) computed using the −'2 log ('2) norm as a cost functional. The initial
step of the best basis algorithm dictates that we mark the values in the bottom row in some
manner – here we have done so by underlining and also by using a bold font.
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Figure 226. Final step of the best basis algorithm. The best basis transform is indicated by
the shaded boxes. As is intuitively reasonable, the selected transform includes the three basis
vectors used to form X.
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Figure 227. The best basis transform for the solar magnetic field magnitude data of Fig-
ure 222. This transform is based on the LA(8) wavelet filter and a cost functional based upon

the −'2 log ('2) norm.
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Figure 228. Best basis transform for the solar magnetic field magnitude data based upon
reflection boundary conditions (top), and the best shift basis transform for the same data
(bottom), again using reflection boundary conditions. Both transforms are based on the same
wavelet filter and cost functional as used in Figure 227. The best shift basis algorithm selected

the shift m = 52 (i.e., T 52) as the best shift.



j n cj,n Sj,n,0 Sj,n,1 |νj,n| LA(8) |pj,n| LA(8)

1 0 0 1 0 L1
2 − 1 3 e{gl} 2.8

1 1 0 1 L1
2 + 0 4 e{hl} 4.2

2 0 0,0 3 0 L2
2 − 2 9 3e{gl} 8.5

1 0,1 1 2 L2
2 + 0 11 e{gl}+ 2e{hl} 11.2

2 1,1 0 3 L2
2 + 1 12 3e{hl} 12.5

3 1,0 2 1 L2
2 − 1 10 2e{gl} + e{hl} 9.8

3 0 0,0,0 7 0 L3
2 − 4 21 7e{gl} 19.9

1 0,0,1 3 4 L3
2 + 0 25 3e{gl}+ 4e{hl} 25.2

2 0,1,1 1 6 L3
2 + 2 27 e{gl}+ 6e{hl} 27.8

3 0,1,0 5 2 L3
2 − 2 23 5e{gl}+ 2e{hl} 22.5

4 1,1,0 4 3 L3
2 − 1 24 4e{gl}+ 3e{hl} 23.8

5 1,1,1 0 7 L3
2 + 3 28 7e{hl} 29.1

6 1,0,1 2 5 L3
2 + 1 26 2e{gl}+ 5e{hl} 26.5

7 1,0,0 6 1 L3
2 − 3 22 6e{gl} + e{hl} 21.2

Table 230. Form of the advances |νj,n| required to achieve approximate zero phase output

using a filter {uj,n,l} based upon an LA filter with L/2 even. Here we let j = 1, 2 and 3 and

n = 0, . . . , 2j−1. The seventh column gives specific values for the LA(8) filter (see Comments
and Extensions to Section 6.5 for a discussion on the last two columns).
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Figure 232. Flow diagram illustrating the analysis of X into MODWPT coefficients W̃j,n
of levels j = 1, 2 and 3. Collectively, all the coefficients in the jth row constitute the level
j MODWPT of X. Note that, within the jth level, the frequency index n ranges from 0 to

2j − 1 and that each W̃j,n has length N (by contrast, in Figure 212a for the DWPT, each

Wj,n has length N/2j).
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Figure 235. Level j = 4 LA(8) MODWPT coefficients for solar physics time series (see text
for details).
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Figure 236. Southern hemisphere solar magnetic field magnitude data (lower plot) and
corresponding modified time/frequency plot (upper). The data are measured in nanoteslas
and were recorded by the Ulysses space craft from 21 hours Universal Time (UT) on day 338
of 1993 (4 December) until 12 hours UT on day 144 of 1994 (24 May). The frequency f is
measured in cycles per day. The four shock wave structures are labeled a to d on the lower
plot, while vertical dotted in the upper plot mark their locations as determined by Balogh et
al. (1995).
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Figure 238. Solar magnetic field magnitude data (lower plot) and corresponding plot of the

MODWPT details D̃4,n, n = 0, . . . , 15 (upper). The nth detail corresponds to the frequency

band from 0.75n cycles per hour to 0.75(n + 1) cycles per hour.
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Figure 244. First ten MODWT vectors selected using the matching pursuit algorithm applied

to the subtidal sea level fluctuations. The dictionary is D
(modwt)

constructed using the LA(8)
wavelet filter. Each vector has been multiplied by +1 or −1 according to the sign of its inner

product with R(n), thus enabling visual correlation with the original series. The standardized

scale for each vector is written to the right of its plot (τj for a vector from W̃j and λ10 for

one from Ṽ10).
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Figure 245. MODWT vectors selected eleventh to twentieth using the matching pursuit
algorithm (see Figure 244 for details).
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Figure 246. Matching pursuit approximations X(m) of the subtidal sea level fluctuations

X using m = 20, 50 and 200 vectors from a MODWT dictionary. The residuals R(200)

corresponding to X(200) are shown above the plot of X.
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Figure 248a. Matching pursuit approximations X(m) of the subtidal sea level fluctuations
X using m = 20, 50 and 200 vectors, but now from a dictionary composed of both MODWT
and ODFT vectors.
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Figure 248b. Normalized residual sum of squares ‖R(m)‖2/‖X‖2 versus the number of terms

m in the matching pursuit approximation using the MODWT dictionary D
(modwt)

(thick curve)
and this dictionary combined with vectors from the ODFT (thin curve).



p

η 0.005 0.025 0.05 0.95 0.975 0.995
1 0.00004 0.0010 0.0039 3.8415 5.0239 7.8794

1.5 0.0015 0.0131 0.0332 4.9802 6.2758 9.3310
2 0.0100 0.0506 0.1026 5.9915 7.3778 10.5966

2.5 0.0321 0.1186 0.2108 6.9281 8.3923 11.7538
3 0.0717 0.2158 0.3518 7.8147 9.3484 12.8382

3.5 0.1301 0.3389 0.5201 8.6651 10.2621 13.8696
4 0.2070 0.4844 0.7107 9.4877 11.1433 14.8603

4.5 0.3013 0.6494 0.9201 10.2882 11.9985 15.8183
5 0.4117 0.8312 1.1455 11.0705 12.8325 16.7496

5.5 0.5370 1.0278 1.3845 11.8376 13.6486 17.6583
6 0.6757 1.2373 1.6354 12.5916 14.4494 18.5476

6.5 0.8268 1.4584 1.8967 13.3343 15.2369 19.4201
7 0.9893 1.6899 2.1673 14.0671 16.0128 20.2777

7.5 1.1621 1.9306 2.4463 14.7912 16.7783 21.1222
Φ−1(p) −2.5758 −1.9600 −1.6449 1.6449 1.9600 2.5758

Table 263. Percentage points Qη(p) for χ2
η distribution for η = 1 to 7.5 in steps of 0.5. The

bottom row gives percentage points Φ−1(p) for the standard Gaussian distribution.



c = 1 c = 2 c = 3 c = 4
r = 0 2.5216281 −4.7715359 7.9199915 −11.9769211
r = 1 16.0778828 −20.6343346 25.0531521 −28.8738136
r = 2 31.8046265 −34.0071373 34.7700272 −34.3151321
r = 3 32.7861099 −30.2861233 26.7109356 −22.8838310
r = 4 18.7432098 −14.5717688 10.7177744 −7.5322194
r = 5 4.7226319 −2.6807923 1.3391306 −0.5167125

Table 272. Coefficients {φ24,n : n = 1, . . . , 24} for AR(24) process (Gao, 1997). The coeffi-
cient in row r and column c is φ24,4r+c. These coefficients are available on the Web site for

this book (see page xiv).
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Figure 273. Periodogram (thin jagged curve) and true SDF (thick smooth) for a time series of
length N = 2048 that is a realization of an AR(24) process (see Table 272 for the coefficients
defining this process). Both the periodogram and true SDF are plotted on a decibel (dB)
scale. Leakage is evident here in the periodogram at high frequencies, where the bias becomes
as large as 40 dB (i.e., four orders of magnitude).
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Figure 274. Sine tapers {an,t} of orders n = 0, 1, 2 and 3 for N = 1024.
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Figure 275. Multitaper SDF estimate Ŝ
(mt)

X
(·) (thin jagged curve) and true SDF (thick

smooth) for a simulated AR(24) time series of length N = 2048 (the corresponding peri-
odogram is shown in Figure 273). The multitaper estimate is based on K = 10 sine tapers.

Both Ŝ
(mt)

X
(·) and the true SDF are plotted on a decibel scale. The width of the crisscross in

the left-hand portion of the plot gives the bandwidth of Ŝ
(mt)

X
(·) (i.e., K+1

(N+1)

.
= 0.0054), while

its height gives the length of a 95% confidence interval for a given 10 · log10(SX(f)).
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Figure 276. PDFs for log (χ2
η) RVs (thin curves) compared to Gaussian PDFs (thick curves)

having the same means and variances. The degrees of freedom η are, from left to right, 10,
12 and 16 (these would be the degrees of freedom associated with a multitaper SDF estimator

Ŝ
(mt)

X
(·) formed from, respectively, K = 5, 6 and 8 data tapers). The vertical lines indicate

the means for the log (χ2
η) RVs – from left to right, these are ψ(5) + log (2)

.
= 2.199, ψ(6) +

log (2)
.
= 2.399 and ψ(8)+log (2)

.
= 2.709. The square roots of the corresponding variances are,

respectively,
√
ψ′(5) .

= 0.470,
√
ψ′(6) .

= 0.426 and
√
ψ′(8) .

= 0.365. (Exercise [7.1] concerns

the derivation of the log (χ2
η) PDF.)
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Figure 277. The autocovariance s̃η(ν) versus ν for N = 2048 and K = 5, 6 and 8 sine tapers.

Each vertical line shows the bandwidth K+1
N+1 of the associated multitaper SDF estimator.
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Figure 278. Multitaper SDF estimate Ŝ
(mt)

X
(·) (in decibels) of the solar physics time series

using K = 10 sine tapers (this series of N = 4096 values is plotted in Figures 222 and 235).
The vertical dotted lines partition the frequency interval [0, 12 cycles/day] into 16 subintervals,
the same as would be achieved by a level j = 4 DWPT (see Figures 220) or MODWPT
(Figure 236). The width of the crisscross in the lower left-hand corner of the plot gives the

physical bandwidth of Ŝ
(mt)

X
(·) (i.e., K+1

(N+1) ∆t

.
= 0.0644 cycles/day – here ∆t = 1/24 days),

while its height gives the length of a 95% confidence interval for a given 10 · log10(SX(f)).
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Figure 282. SDFs for FGN, PPL and FD processes (top to bottom rows, respectively) on both
linear/log and log/log axes (left- and right-hand columns, respectively). Each SDF SX(·) is
normalized such that SX(0.1) = 1. The table below gives the parameter values for the various
plotted curves.

process thick solid dotted dashed thin solid

FGN H = 0.55 H = 0.75 H = 0.90 H = 0.95
PPL α = −0.1 α = −0.5 α = −0.8 α = −0.9
FD δ = 0.05 δ = 0.25 δ = 0.40 δ = 0.45
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Figure 283. Simulated realizations of FGN, PPL and FD processes. The thick (thin) solid
curves in Figure 282 show the SDFs for the top (bottom) three series – these SDFs differ
markedly only at high frequencies. We formed each simulated X0, . . . , X511 using the Davies–
Harte method (see Section 7.8), which does so by transforming a realization of a portion
Z0, . . . , Z1023 of a white noise process (the Zt values are on the Web site for this book – see
page xiv). To illustrate the similarity of FGN, PPL and FD processes with comparable H, α
and δ, we used the same Zt to create all six series. Although the top (bottom) three series
appear to be identical, estimates of their SDFs show high frequency differences consistent with
their theoretical SDFs.



process nonstationary stationary white noise stationary
LMP LMP not LMP

FGN — 1
2 < H < 1 H = 1

2 0 < H ≤ 1
2

PPL α ≤ −1 −1 < α < 0 α = 0 α ≥ 0
FD δ ≥ 1

2 0 < δ < 1
2 δ = 0 δ ≤ 0

Table 286. Parameter ranges for each named stochastic process for which the form of the
process is (a) nonstationary long memory, (b) stationary long memory, (c) white noise or
(d) stationary but not long memory.
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HB = − 1
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Figure 286. Relationships amongst the spectral slope α, the fractional difference parameter
δ and the Hurst coefficient H (both for FGN and DFBM). The unshaded, lightly shaded and
heavily shaded regions represent parameter values corresponding to, respectively, stationary
processes without long memory, stationary long memory processes and nonstationary long
memory processes (white noise processes occur when the boundary between the unshaded and
lightly shaded regions crosses a thick line). For this plot only, we distinguish between H as
a parameter for DFBM and for FGN by using HB in the former case and HG in the latter.
Note that, while α and δ range over the entire real axis, we must have 0 < H < 1 for both
DFBM and FGN.
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Figure 289. Simulated realizations of nonstationary processes {Xt} with stationary backward
differences of various orders (first column) along with their first backward differences {(1 −
B)Xt} (second column) and second backward differences {(1−B)2Xt} (final column). From
top to bottom, the processes are (a) a random walk; (b) a modified random walk, formed using
a white noise sequence with mean µε = −0.2; (c) a random run; and (d) a process formed by
summing the line given by −0.05t and a simulation of a stationary FD process with δ = 0.45.
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Figure 300. Realization of a fractional Gaussian noise (FGN) process with self-similarity
parameter H = 0.9. The sample mean of approximately 0.53 and the true mean of zero are
indicated by the thin horizontal lines.
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Figure 301. Realization of a stochastic process whose first order backward difference is an
FGN process with self-similarity parameter H = 0.1. Depending upon its precise definition,
the variance for this process is either infinite for all t or is time dependent and increases to
infinity as |t| goes to infinity.



Xt −→ Dd(·) −→ Yt −→ D L
2 −d(·) −→ Ot −→ ÃL(·) −→W 1,t

Figure 305. Flow diagram depicting filtering of {Xt} using the Daubechies MODWT wavelet

filter {h̃l} to obtain W 1,t. The actual filter can be decomposed into a cascade involving

three filters (indicated above by their squared gain functions Dd(·), D
L
2 −d(·) and ÃL(·)). By

assumption the dth order backward difference of {Xt} is a stationary process {Yt}, while the
wavelet filter has a width L ≥ 2d and hence implicitly involves L/2 backward difference filters

D(·). When L = 2d, the processes {Yt} and {Ot} are identical (the filter D0(·) is taken to

be a ‘do nothing’ filter); when L > 2d, we obtain {Ot} by taking L
2 − d successive backward

differences of {Yt}. In either case, the process {Ot} is then subjected to the smoothing filter

ÃL(·), yielding the first level wavelet coefficient process {W 1,t}.



δ L = 2 L = 4 L = 6 L = 8
−1/2 0.85 0.89 0.91 0.92
−1/4 0.81 0.86 0.89 0.90
−1/8 0.78 0.84 0.87 0.89

0 0.75 0.82 0.85 0.87
1/8 0.72 0.80 0.83 0.86
1/4 0.68 0.77 0.81 0.84
1/2 0.61 0.72 0.77 0.80
1 0.50 0.61 0.67 0.71

3/2 — 0.52 0.58 0.62

Table 310. Asymptotic relative efficiencies (AREs) of the DWT-based estimator ˆ̂ν
2
X(τ1) with

respect to the MODWT-based estimator ν̂2
X(τ1) for various combinations of FD processes and

Daubechies wavelet filters. Note that an ARE of less than unity implies that ν̂2
X(τ1) has

smaller large sample variance than ˆ̂ν
2
X(τ1).
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Figure 318. Plot of differences in time {Xt} as kept by clock 571 (a cesium beam atomic
clock) and as kept by the time scale UTC(USNO) maintained by the US Naval Observatory,

Washington, DC (top plot); its first backward difference {X(1)
t } (middle); and its second

backward difference {X(2)
t } (bottom). In the middle plot, Y t(τ1) denotes the τ1 average

fractional frequency deviates (given in parts in 1013) – these are defined by Equation (321c)

and are proportional to X
(1)
t .
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Figure 319. Square roots of wavelet variance estimates for atomic clock time differences
{Xt} based upon the unbiased MODWT estimator and the following wavelet filters: Haar (x’s
in left-hand plot, through which a least squares line has been fit), D(4) (circles in left- and
right-hand plots) and D(6) (pluses in left-hand plot). The 95% confidence intervals in the
second plot are the square roots of intervals computed using Equation (313c), with η given by
η̂1 of Equation (313d) for j = 1, . . . , 6 and by η3 of Equation (314c) for j = 7, 8. The actual
values for the various ν̂X(τj) are listed on the Web site for this book – see page xiv .
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Figure 322. Square roots of wavelet variance estimates for atomic clock one day average

fractional frequency deviates {Y t(τ1)} based upon the unbiased MODWT estimator and the
following wavelet filters: Haar (x’s in left-hand plot) and D(4) (circles in left and right-hand
plots). The actual values for ν̂

Y
(τj) are listed on the Web site for this book – see page xiv .
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Figure 324. Estimated time-dependent LA(8) wavelet variances for physical scale τ2 ∆t =
1 day for the Crescent City subtidal sea level variations of Figure 186, along with a represen-
tative 95% confidence interval based upon a hypothetical wavelet variance estimate of 1/2 and
a chi-square distribution with ν = 15.25 (see text for details).
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Figure 326. Estimated LA(8) wavelet variances for physical scales τj ∆t = 2j−2 days, j =
2, . . . , 7, grouped by calendar month for the subtidal sea level variations of Figure 186.
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Figure 327. Estimated Haar wavelet variances for the Nile River minima time series before
and after year 715.5 (x’s and o’s, respectively), along with 95% confidence intervals (thin and
thick lines, respectively) based upon a chi-square approximation with EDOFs determined by

η3 of Equation (314c). The actual values for ν̂2
X(τj) are listed on the Web site for this book

– see page xiv .
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Figure 328. Selected portion {Xt} of N = 4096 vertical shear measurements (top plot) and

associated backward differences {X(1)
t } (bottom). The full series is plotted at the bottom of

Figure 194, on which the subseries is delineated by two thin vertical lines.
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Figure 329. Wavelet variances estimated for vertical shear series using the unbiased MODWT
estimator and the following wavelet filters: Haar (x’s in left-hand plot, through which two
regression lines have been fit), D(4) (small circles, right-hand plot), D(6) (+’s, both plots) and

LA(8) (big circles, right-hand plot). The values for the various ν̂2
X(τj) are listed on the Web

site for this book – see page xiv .
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Figure 330. Comparison of ‘octave band’ SDF estimates for the vertical shear measurements
based on the periodogram (o’s), a multitaper SDF estimate formed using K = 7 sine tapers
(;’s) and Haar and D(6) wavelet variance estimates (thick and thin staircases, respectively).
See text for details.
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Figure 331. Leakage in Haar wavelet variance (see text for details).
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Figure 333. 95% confidence intervals for the D(6) wavelet variance for the vertical ocean
shear series. The intervals are based upon the unbiased MODWT estimator (+’s in Figure 329

and o’s above) and χ2 approximations to its distribution with EDOFs determined by, from
left to right, η̂1 of Equation (313d); η2 of Equation (314b) using the nominal model for SX(·)
given by Equation (331); and η3 of Equation (314c) (Table 333 lists the values for the EDOFs).

j

1 2 3 4 5 6 7 8 9
η̂1 1890 1027 584 289 94 82 32 20 8
η2 2850 1633 899 359 173 78 31 17 5
η3 2046 1020 508 251 123 59 27 11 3
Mj 4091 4081 4061 4021 3941 3781 3461 2821 1541

Table 333. Equivalent degrees of freedom η̂1, η2 and η3 (rounded to the nearest integer)

associated with the D(6) wavelet variance estimates ν̂2
X(τj), j = 1, . . . , 9, shown in Figure 333.

The bottom row gives the number Mj of MODWT wavelet coefficients at each scale.
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Figure 334. Estimated LA(8) wavelet variances (thick curves) for the shear data, computed
using a running segment of 257 MODWT wavelet coefficients for depths surrounding 450 me-
ters. As marked on the plots, the physical scales are 0.2, 0.4, 0.8 and 1.6 meters (i.e., τj ∆t,

j = 2, . . . , 5). The thin curves above and below the estimates are 95% confidence intervals as

per Equation (313c) with η = 257/2j (this is in accordance with η3 of Equation (314c)).
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Figure 342. LA(8) DWT coefficients for simulated FD(0.4) time series and sample ACSs.
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Figure 344. Sample variances of LA(8) wavelet coefficients from Figure 342 for – from right
to left – levels j = 1, . . . , 7 (circles) along with true FD(0.4) SDF evaluated at the center

frequency 1/2j+
1
2 of the octave bands [ 1

2j+1 ,
1
2j ] (thick curve).
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Figure 346a. ACSs at τ = 1, . . . , 4 for Haar, D(4) and LA(8) wavelet coefficients Wj,t,

j = 1, . . . , 4, of an FD(0.4) process. The ACS values are plotted as deviations from zero (some
are not visible because they are so close to zero).
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Figure 346b. ACS for FD process with δ = 0.4 out to lag τ = 64.
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Figure 347a. Correlation between the Haar wavelet coefficients Wj,t and Wj′,t′ formed from

an FD(0.4) process and for levels satisfying 1 ≤ j < j′ ≤ 4. By setting t = 2|j
′−j|−1 and

t′ = t + τ with τ = −8, . . . , 8, we capture two coefficients exhibiting the maximum absolute
correlation over all possible combinations of t and t′.

    

   

    

   

   

    

   

    

   

   

    

   

   

    

   

j′ = 2 j′ = 3 j′ = 4

j = 1

j = 2

j = 3

0.2

0.0

−0.2
0.2

0.0

−0.2
0.2

0.0

−0.2

τ

τ

τ

−8 0 8

−8 0 8

−8 0 8

Figure 347b. As in Figure 347a, but now using the LA(8) DWT and with t set as per
Equation (346).
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Figure 349. SDFs for an FD(0.4) process (left-hand plot) and for nonboundary LA(8) wavelet
coefficients in W1, W2, W3 and W4 (right-hand). The vertical axis is in units of decibels (i.e.,
we plot log10(SX(f)) versus f). The vertical lines in the left-hand plot denote the nominal
pass-bands for the four Wj .
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Figure 350. Correlation matrix of Haar wavelet coefficients for a portion of length N = 32
from an FD process with δ = 0.4.
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Figure 351a. As in Figure 350, but now using the D(4) DWT.
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Figure 351b. As in Figure 350, but now using the LA(8) DWT.
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Figure 352. SDFs for AR(1) processes with φ = 0.9 (top left-hand plot) and −0.9 (bottom
left-hand) and for corresponding nonboundary LA(8) wavelet coefficients in W1 to W4 (right-
hand plots). The vertical axes are in decibels, and the vertical lines in the left-hand plots
delineate the nominal pass-bands for the four Wj .
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Figure 353. ACSs at τ = 1, . . . , 4 for LA(8) wavelet coefficients Wj,t, j = 1, . . . , 4, of an

AR(1) process with φ = 0.9 and −0.9 (top and bottom rows, respectively).
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Figure 356. Diagonal elements ΣY,m,m+τ and ΣX,m,m+τ , m = 0, . . . , N − 1 − τ , of the

covariance matrices ΣY and ΣX (thick jagged curves and thin horizontal lines, respectively)

for sample size N = 64 from an FD(0.4) process with σ2
ε = 1 and with ΣY constructed using

an LA(8) DWT. Three diagonals are plotted for each covariance matrix, namely, the main
diagonal (τ = 0) and the first two off-diagonals (τ = 1 and 2). Whereas ΣX exhibits the
Toeplitz structure required for a stationary process, its approximation ΣY does not.
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Figure 357. True ACVS (thin curves) and wavelet-based approximate ACVSs (thick) for
an FD(0.4) process. The approximating ACVSs are based on an LA(8) DWT in which we
generate a series of length M and then extract a series of length N = 64. As M goes from N
to 4N , the approximate ACVS gets closer to the true ACVS.
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Figure 358. LA(8) wavelet-based simulation of a series of length N = 1024 from an FD

process with zero mean and with parameters δ = 0.4 and σ2
ε = 1.0.
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Figure 359. Estimated ACVSs averaged over 10 000 realizations generated via the Davies–
Harte method (thin curve, middle of the plot) and the LA(8) wavelet-based method (thick
curve) for an FD(0.4) process. The corresponding lower and upper pairs of curves indicate the
5% and 95% percentage points of the empirical distribution of the 10 000 simulations.
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Figure 360. LA(8) wavelet-based simulation of a series of length N = 1024 from process with
time varying statistical properties.



MLE

δ Haar D(4) LA(8) exact

0.25 mean 0.2184 0.2293 0.2328 0.2374
bias −0.0316 −0.0207 −0.0172 −0.0126
SD 0.0713 0.0705 0.0710 0.0673

RMSE 0.0780 0.0735 0.0731 0.0685
0.4 mean 0.3614 0.3727 0.3768 0.3797

bias −0.0386 −0.0273 −0.0232 −0.0203
SD 0.0675 0.0652 0.0640 0.0604

RMSE 0.0778 0.0707 0.0681 0.0637

Table 363. Sample mean, bias, standard deviation and root mean square error of 1024

wavelet-based approximate MLEs δ̃(s) of the parameter δ based on the likelihood function of
Equation (362a) using Haar, D(4) and LA(8) wavelet filters. All 1024 time series were of
length N = 128 and were simulated using the Davies–Harte method. Corresponding statistics

for exact MLEs δ̂ are given in the final column.



MLE

δ Haar D(4) LA(8) exact

0.25 mean 0.2256 0.2363 0.2402 0.2443
bias −0.0244 −0.0137 −0.0098 −0.0057
SD 0.0505 0.0495 0.0502 0.0479

RMSE 0.0561 0.0514 0.0511 0.0483
0.4 mean 0.3710 0.3832 0.3886 0.3900

bias −0.0290 −0.0168 −0.0114 −0.0100
SD 0.0488 0.0478 0.0465 0.0437

RMSE 0.0567 0.0506 0.0479 0.0448

Table 364. As in Table 363, but now with N = 256.



MLE

δ Haar D(4) LA(8) exact

0.25 mean 0.2058 0.2182 0.2227 0.2274
bias −0.0442 −0.0318 −0.0273 −0.0226
SD 0.0559 0.0551 0.0557 0.0528

RMSE 0.0712 0.0636 0.0620 0.0575
0.4 mean 0.3449 0.3602 0.3672 0.3687

bias −0.0551 −0.0398 −0.0328 −0.0313
SD 0.0550 0.0538 0.0525 0.0494

RMSE 0.0778 0.0669 0.0619 0.0585

Table 366. As in Table 364, but now with the process mean assumed unknown and hence

estimated using the sample mean X.



   

 

  
o

o

   

 

  

      

 

o

o

o

o

o

o

      

 

o

o

o

o

   

 

  

   

 

  

........

..
..

..
..

.......
..

..
..

.

......
..

..
..

......
...

.
...

.
.
.

....... .
....

.
.

......
....

.
.

....
....

....
.... ...........

..
..

.
X

W1 V1

Haar

D(4)

D(6)

10

0

−10
10

0

−10
10

0

−10
10

0

−10
0 5 10 15 0 5 10 15

n n

Figure 369. Linear and quadratic trends T (top plots), below which are shown their partial

DWT coefficients W = [WT
1 ,V

T
1 ]T based on the Haar, D(4) and D(6) wavelet filters (second

to fourth rows, respectively). The vertical dotted lines delineate the subvectors W1 and V1.
Boundary wavelet and scaling coefficients are indicated by circles (there are none for the Haar;
one each in W1 and V1 for the D(4); and two in each of the subvectors for the D(6)). Because
the Haar wavelet does not reduce either linear or quadratic polynomials to zero, its wavelet
coefficients are all nonzero; on the other hand, the D(6) wavelet reduces both polynomials to
zero, so its six nonboundary wavelet coefficients are zero in both W1. The D(4) wavelet can
handle a linear polynomial, but not a quadratic, which is why its seven nonboundary wavelet
coefficients are zero for the former and nonzero for the latter. (For the record, the linear and

quadratic trends are defined by Tt = 0.9 · (t− 7) and Tt = 0.2 · (t− 7)2 − 6. This illustration
is due to W. Constantine, MathSoft, Seattle.)



MLE

δ Haar D(4) LA(8) exact

0.4 mean 0.3670 0.3762 0.3792 0.3900
bias −0.0330 −0.0238 −0.0208 −0.0100
SD 0.0588 0.0732 0.0943 0.0437

RMSE 0.0674 0.0769 0.0966 0.0448
σδ 0.0530 0.0673 0.0869

0.75 mean 0.7230 0.7277 0.7346 0.7677
bias −0.0270 −0.0223 −0.0154 0.0177
SD 0.0783 0.0878 0.0863 0.0272

RMSE 0.0829 0.0906 0.0877 0.0325
σδ 0.0526 0.0665 0.0857

Table 372. As in Table 364, but now using the likelihood function of Equation (371a) to

define the wavelet-based approximate MLE δ̃(s/ns) for δ (the δ = 0.4 results for the exact MLE
in the final column are replicated from Table 364). The nature of the term σδ is explained in
the text.
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Figure 375. Approximations Cj/2
j (computed from Equation (343b) via numerical integra-

tion) to wavelet variances ν2
X(τj) versus scales τj , j = 1, . . . , 8, for FD processes with δ = 0.4

(lower circles) and 0.75 (upper). See the text for an explanation of the portion of the plot
between these sets of circles.



WLSE MLE

δ Haar D(4) LA(8) exact

0.4 mean 0.3925 0.4006 0.4044 0.3900
bias −0.0075 0.0006 0.0044 −0.0100
SD 0.0715 0.0886 0.1185 0.0437

RMSE 0.0719 0.0886 0.1186 0.0448
0.75 mean 0.7398 0.7443 0.7435 0.7677

bias −0.0102 −0.0057 −0.0065 0.0177
SD 0.0779 0.0877 0.1196 0.0272

RMSE 0.0786 0.0879 0.1198 0.0325
√

var {β̂(wls)} 0.0891 0.1145 0.1552

Table 377. As in Table 372, but now using the wavelet-based WLSE δ̂(wls) (the final column
is replicated from Table 372). The WLSEs are based on the unbiased MODWT estimators

ν̂2
X(τj) of the wavelet variance, which are presumed to have EDOFs ηj = max {Mj/2

j, 1}.
We set J1 = 2 for all three wavelets. The results reported in the table are based on 1024
simulated time series of sample size N = 256.



WLSE MLE

δ Haar D(4) LA(8) exact

0.4 mean 0.3881 0.3994 0.4000 0.3900
bias −0.0119 −0.0006 −0.0000 −0.0100
SD 0.0669 0.0700 0.0728 0.0437

RMSE 0.0680 0.0700 0.0728 0.0448
0.75 mean 0.7278 0.7432 0.7442 0.7677

bias −0.0222 −0.0068 −0.0058 0.0177
SD 0.0739 0.0718 0.0726 0.0272

RMSE 0.0772 0.0721 0.0728 0.0325

Table 378. As in Table 377, but now using an WLSE δ̃(wls) based upon a biased MODWT
estimator of the wavelet variance along with reflection boundary conditions.
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Figure 383. Wavelet-based decomposition of atomic clock fractional frequency deviates Y

into an estimated trend T̂ and residuals Û about the trend. Here we used an LA(8) partial

DWT of level J0 = 7. Note that T̂ has much more structure than a low order polynomial and
in fact resembles the output from a variable bandwidth smoother: it is quite smooth near the
middle of the series, but then becomes rougher in appearance toward the end points.



Haar D(4) LA(8)

δ̃(s/ns) 0.5031 0.3943 0.3921
σδ̃(s/ns) 0.0252 0.0282 0.0318
σ̃2
ε 0.3057 0.2838 0.2740

δ̂(wls) 0.4449 0.3812 0.3460√
var {δ̂(wls)} 0.0374 0.0418 0.0479

J0 10 8 7

Table 384. Parameter estimation for the atomic fractional frequency deviates (see text for
details).
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Figure 384. D(4) MODWT wavelet variance estimates for atomic clock fractional frequency
deviates (re-expressed as spectral levels Cj), along with spectral levels deduced from MLEs of

δ and σ2
ε (thick curve). The two shorter thin curves are discussed in the text.
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Figure 386. Reduced log likelihood functions for the FD parameter δ computed using the
final 512 observations of the Nile River time series (see Figure 192). The thick curve is based

on the LA(8) wavelet and attains its minimum at the estimate δ̃(s) .
= 0.4532, while the thin

curve is for the exact method and reaches its minimum at δ̂
.
= 0.4452.
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Figure 387. Variance of wavelet coefficients computed via LA(8) MLEs δ̃(s) and σ̃2
ε(δ̃

(s))
(solid curve) as compared to sample variances of LA(8) wavelet coefficients (circles).

critical levels

τj M ′
j D 10% 5% 1%

1 year 331 0.1559 0.0945 0.1051 0.1262
2 years 165 0.1754 0.1320 0.1469 0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
8 years 41 0.2313 0.2572 0.2864 0.3436

Table 387. Results of testing Nile River minima for homogeneity of variance using the Haar
wavelet filter critical values determined by computer simulations (Whitcher et al., 2000a).
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Figure 388. The Nile River minima (top plot) along with ∆−
k

versus k for scales τ1 and τ2
(middle and bottom plots, respectively). The thick vertical lines denote the year 715.
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Figure 396. Three signals (left-hand column) and their corresponding normalized partial
energy sequences (right-hand column) for the signals themselves (curves broken by intermittent
dots), their ODFT coefficients (thin solid curves) and their LA(8) DWT coefficients (dashed
curves).

domain of signal

frequency time mixture
F 2 29 28
IN 105 9 75
W 22 14 21

Table 396. Number of coefficients required to obtain no more than a 1% relative approxi-
mation error for three signals using an orthonormal discrete Fourier transform F , an identity
transform IN and an LA(8) DWT transform W (see text for details).
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Figure 397. Plot of N = 6784 values of a hypothesized signal D related to vertical shear
in the ocean versus depth in meters (top plot), along with reconstructions using 100 LA(8)
DWT coefficients, 300 LA(8) DWT coefficients and 300 ODFT coefficients. See Section 5.10
for more discussion about these data.
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Figure 399. Mappings from Ol to O
(t)

l
, where O

(t)

l
is either O

(ht)

l
for hard thresholding (solid

lines), O
(st)

l
for soft thresholding (dashed lines), or O

(mt)

l
for mid thresholding (dotted lines).

Note that the effect of all three thresholding schemes is the same when −δ ≤ Ol ≤ δ.
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Figure 410. PDFs for N (0, 1) and N (0, 10) RVs (left-hand plot, thin and thick curves,
respectively) and for an RV obeying a Gaussian mixture model (right-hand plot). The mixture
PDF is non-Gaussian and is formed by adding the N (0, 1) and N (0, 10) PDFs, weighted by
pl = 0.75 and 1− pl = 0.25, respectively (adapted from Figure 1 of Chipman et al., 1997).
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Figure 412. The conditional mean shrinkage rule of Equation (411c) for pl = 0.95, σ2
nl

= 1

and σ2
Gl

= 5 (thickest curve, furthest from dotted diagonal), 10 and 25 (thinnest curve, nearest

to diagonal). Because of the correspondence between conditional mean shrinkage rules and the
Bayes rule estimators of Chipman et al. (1997) with respect to squared error loss, the above
also illustrates B2(·) of Equation (414a).
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Figure 416. Comparison of the posterior median B1(ol) (thin curve) to the approximate
conditional median U1(ol) (thick) when σ2

Gl
= 25, pl = 0.95 and σ2

nl
= 1. The dotted line

marks the diagonal.
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Figure 418. Nuclear magnetic resonance (NMR) spectrum (top plot), along with wavelet-
based hard threshold signal estimates using the level J0 = 6 partial LA(8) DWT (middle)

and a similar D(4) DWT (bottom). In both cases, we determine the noise variance σ2
ε using

the MAD standard deviation estimate σ̂(mad), after which we set the universal threshold level

δ̂(u) ≡ √
[2σ̂2

(mad) log (N)]. This NMR spectrum was extracted from the public domain software

package WaveLab, to which it was provided by Andrew Maudsley, Department of Radiology,
University of California, San Francisco (the data can be accessed via the Web site for this
book – see page xiv).
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Figure 419. Thresholding signal estimates of the NMR spectrum based upon the level J0 = 6
partial LA(8) DWT with – from top to bottom – hard, soft and mid thresholding (the top
plot is a repeat of the middle of Figure 418). For all three estimates, we use the universal

threshold level δ̂(u) ≡ √
[2σ̂2

(mad) log (N)]
.
= 6.12622 based upon the MAD standard deviation

estimate σ̂(mad)
.
= 1.64538.



 

 

 

 

 

 

 

 

 

 

     

 

δ̂(S) .= 2.19494

δ̂(S) .= 3.19879
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Figure 421. Thresholding signal estimates of the NMR spectrum based upon the level J0 = 6

partial LA(8) DWT with soft thresholding and SURE threshold levels δ̂(S), which are computed
using MAD scale estimates based on, respectively, just the unit scale wavelet coefficients (top
plot) and wavelet coefficients from all six scales (bottom).



 

 

 

 

 

     

 

 

 

 

 

 
δ̂(tfcv) .= 0.78029

δ̂(loocv) = 1.23812
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Figure 423. Thresholding signal estimates of the NMR spectrum based upon the level J0 = 6
partial LA(8) DWT with soft thresholding and threshold levels determined by two-fold cross-
validation (top plot) and leave-one-out cross-validation (bottom).
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Figure 425. Shrinkage signal estimates of the NMR spectrum based upon the level J0 = 6
partial LA(8) wavelet transform and the conditional mean with p = 0.9 (top plot), 0.95 (mid-

dle) and 0.99 (bottom). The remaining parameters (namely, σ2
ε , σ

2
W and σ2

G) are estimated
as explained in the text.
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Figure 427. Bayes rules B2(wj,k) versus wj,k for the Vidakovic (1998) scheme as applied to

the NMR spectrum. The thin and thick curves depict B2(·) assuming degrees of freedom ϑ
of, respectively, 5 and 2.01. The dotted line marks the diagonal. The corresponding signal
estimates are shown in Figure 428.
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Figure 428. Shrinkage signal estimates of the NMR spectrum based upon the level J0 = 6
partial LA(8) wavelet transform and the Bayes rule B2(·) as formulated by Vidakovic (1998)
and given in Equation (414b) (the specific rule for each estimate is plotted in Figure 427). The
difference between the two estimates is solely due to the choice of the degrees of freedom ϑ for
the signal PDF fR(·), with the remaining two parameters (κ and υ) estimated as described in
the text.
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Figure 430. Thresholding signal estimates of the NMR spectrum based upon the level J0 = 6
LA(8) MODWT with – from top to bottom – hard, soft and mid thresholding (Figure 419
has corresponding plots for the DWT). Each estimate uses the universal threshold levels

δ̃
(u)
j ≡ √

[2σ̃2
(mad) log (N)/2j ]

.
= 6.49673/2j/2 computed via the MODWT-based MAD stan-

dard deviation estimate σ̃(mad)
.
= 1.74489.
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Figure 431. Denoising of NMR spectrum (top plot) using hard thresholding based upon
keeping the M coefficients with the largest magnitudes in the ODFT (left-hand column) and
the level J0 = 6 partial LA(8) DWT (right-hand) for M = 50, 100, 200 and 400 (second to
fifth rows, respectively).



j

1 2 3 4 5 6 7 8
−δ(l)

j,α
2

7.825 7.031 6.228 5.750 5.460 5.287 5.182 5.118
δ(u)

j,α
2

5.556 5.601 5.142 4.976 4.913 4.901 4.910 4.925

Table 436. Lower and upper thresholds δ
(l)

j,α
2

and δ
(u)

j,α
2
, j = 1, . . . , 8, for wavelet-based

thresholding of the log periodogram using the LA(8) DWT. Here we use the approximation

α = PF /M with PF = 0.1 and M = 1024. For convenience, we have tabulated −δ(l)

j,α
2

instead

of δ
(l)

j,α
2
. Note that, as j increases, the lower and upper thresholds come closer to each other

in magnitude, as would be expected due to convergence to Gaussianity.
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Figure 438. Periodogram-based estimated SDFs (thick curves) and true SDFs (thin) for the
AR(24), AR(2) and MRC processes (see the text for details).
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Figure 443. Box plots of the estimated standard deviations σ̂j of wavelet coefficients nj,t at

levels j = 1, 2, 3 and 4 derived from the AR(2) process using different wavelet filters, for N =
2048 and K = 10. The horizontal solid lines extending beyond each box plot indicate the value
of σj derived from Equation (441b). The ‘nominal’ standard deviation ση =

√
[ψ′(10)] .

= 0.32
is marked as a solid horizontal line right across each of the plots.
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Figure 446. Average value over a thousand simulations of the RMSEs for the AR(24) (left-
hand plot), AR(2) (center) and MRC models (right-hand). In each plot, the average RMSE
(in dBs) is plotted for the level-dependent multitaper-based method with hard (solid thick
curve), mid (solid medium) and soft (solid thin) thresholding and also for the level-independent
method with hard (dashed thick curve), mid (dashed medium) and soft (dashed thin) thresh-
olding. Three values of level J0 are considered, namely 5, 6 and 8, corresponding to 64, 32 and
8 scaling coefficients left untouched by the thresholding. The asterisks show average RMSEs
for the periodogram-based method. In all cases, the series length is N = 2048, and we use the
LA(8) wavelet to compute the DWT.
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Figure 447. Estimated SDFs (thick curves) and true SDF (thin) for the AR(24) process.
The SDF estimates are representative in that they have RMSEs closest to the average RMSE
over a thousand simulations. The upper plot is for level-independent soft thresholding, and
the lower plot, level-dependent hard thresholding, with J0 = 5 in both cases. The simulated
series are of length N = 2048, and we use an LA(8) DWT.



 

 

 

 

 

 

      

 

 

 

 

 

 

 30

20

10

0

−10

−20
30

20

10

0

−10

−20
0.0 0.1 0.2 0.3 0.4 0.5

f

Figure 448. Estimated SDFs (thick curves) and true SDF (thin) for the AR(2) process.
Layout and parameters are as for Figure 447.
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Figure 449. Estimated SDF (thick curve) and true SDF (thin curve) for the mobile radio
communications process. Layout and parameters are as for Figure 447.
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Figure 458. Translation and dilation of the function defined by γ(t) = t exp(−t2/2).
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Figure 461. The Haar scaling function φ(H)(·) and corresponding approximation spaces. The
first three plots on the middle row show three of the basis functions for the Haar approximation

space V
(H)
0 , namely, from left to right, φ

(H)
0,−1(·), φ

(H)(·) and φ
(H)
0,1(·). The right-most plot on this

row is an example of a function contained in V
(H)
0 . The top and bottom rows show, respectively,

corresponding plots for the Haar approximation spaces V
(H)
1 (a coarser approximation than

V
(H)
0 ) and V

(H)
−1 (a finer approximation than V

(H)
0 ). The right-most column of plots can be

regarded as three Haar approximations of a single L2(R) function, with the associated scales
of 2, 1 and 1/2 (top to bottom).



{gj,l} φ(·)
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Figure 471. Level j equivalent D(4) scaling filters {gj,l} (left-hand column) and the D(4)

scaling function φ(·) evaluated over the grid defined by l
2j , l = −3 · 2j, . . . ,−1, 0 (right-hand)

for j = 2, 4, 6 and 8 (top to bottom). For a given j, the two plotted sequences consist of

3 · 2j + 1 values connected by line segments. In the right-hand column, the function φ(·) is
plotted at values t = −3.0 to t = 0 in steps of, from top to bottom, 0.25, 0.0625, 0.015625 and
0.00390625. The filters in the left-hand column are plotted in such a manner as to illustrate
the approximation of Equation (469), whose validity increases with increasing j.
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Figure 473a. Venn diagram illustrating the nesting of subspaces Vj and Wj . There are five
arcs emanating from the baseline. Starting at each end of an arc, there is a line segment that
continues to the lower left-hand corner of the plot. The area enclosed by a given arc and the
two line segments emanating from its ends represents an approximation space Vj . The largest
such area outlines the entire figure and represents V−1, while the smallest area represents V3
(note that V3 ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1, as required). The shaded areas represent the detail
spaces Wj . Note that W0 ⊂ V−1, W1 ⊂ V0, W2 ⊂ V1 and W3 ⊂ V2 (there is no label for

W3 due to lack of space). Note also that, while V0 ⊂ V−1 and W0 ⊂ V−1, it is the case that
V0 ∪W0 != V−1 because V−1 also contains linear combinations of functions that are in both
V0 and W0 – such linear combinations need not be in either V0 or W0, but rather can be in
the space disjoint to V0 and W0 and represented by the scythe-like shape bearing the label
V−1. Finally, note that all the Vj and Wj intersect at a single point (represented by the lower

left-hand corner of the plot) because all these spaces must contain the null function.

   

 

 

 

 

   

 

   

 

V (H)
0 W (H)

0 V (H)
−1

2

0

−2
−8 0 8 −8 0 8 −8 0 8

t t t

Figure 473b. Examples of functions in V
(H)
0 , W

(H)
0 and V

(H)
−1 . Note that, while the function in

V
(H)
0 is constant over intervals of the form (k− 1, k] for k ∈ Z, the function in W

(H)
0 integrates

to zero over such intervals (the ends of these intervals are indicated in the middle plot by the

vertical dotted lines). The function in V
(H)
−1 is in fact formed by point-wise addition of the

functions in the other two spaces.
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Figure 475. The Haar wavelet function ψ(H)(·) and corresponding detail spaces. The first
three plots on the middle row shows three of the basis functions for the Haar detail space

W
(H)
0 , namely, from left to right, ψ

(H)
0,−1(·), ψ

(H)(·) and ψ
(H)
0,1(·). The right-most plot on this

row is an example of a function contained in W
(H)
0 . The top and bottom rows show, respec-

tively, corresponding plots for the Haar detail spaces W
(H)
1 and W

(H)
−1 (Figure 461 shows the

corresponding Haar scaling function and approximation spaces).
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Figure 478. Level j equivalent D(4) wavelet filters {hj,l} (left-hand column) and the D(4)

wavelet function ψ(·) evaluated over the grid defined by l
2j , l = −3 · 2j, . . . ,−1, 0 (right-

hand) for j = 2, 4, 6 and 8 (top to bottom). For details on the layout, see the caption for the
analogous Figure 471.
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Figure 482. Multiresolution analysis of a function x(·) ∈ V
(H)
−1 (upper left-hand plot), yielding

three approximations, namely, s0(·) ∈ V
(H)
0 , s1(·) ∈ V

(H)
1 and s2(·) ∈ V

(H)
2 (remaining plots

on top row, from left to right), along with corresponding details d0(·) ∈ W
(H)
0 , d1(·) ∈ W

(H)
1

and d2(·) ∈ W
(H)
2 (bottom row, from left to right).



hl ≡ h̄−l, l = 0, . . . , L− 1 gl ≡ ḡ−l, l = 0, . . . , L− 1

h̄l = (−1)lḡ1−l−L ḡl ≡ (−1)l+1h̄1−l−L

{h̄l} ←→ H(·) {ḡl} ←→ G(·)

{hl} ←→ H(·) {gl} ←→ G(·)

H(f) = H(−f) G(f) = G(−f)

H(0) = 0 G(0) =
√

2

H(f) = −ei2πf(L−1)G( 1
2 − f) G(f) = ei2πf(L−1)H( 1

2 − f)

H
(m)

(0) = 0, m = 0, . . . , r − 1 G
(m)

( 1
2 ) = 0, m = 0, . . . , r − 1

h̄l =
∫
φ(t− l)

ψ(
t
2 )√
2 dt ḡl =

∫
φ(t− l)

φ(
t
2 )√
2 dt

∫
ψ(t)dt = 0

∫
φ(t) dt = 1

support {ψ(·)} ⊂ (−(L− 1), 0] support {φ(·)} ⊂ (−(L− 1), 0]

ψ(·)←→ Ψ(·) φ(·)←→ Φ(·)

Ψ(−2jf) ≈ H̃j(f) Φ(−2jf) ≈ G̃j(f)

ψ(− l
2j ) ≈ 2j h̃j,l = 2j/2hj,l φ(− l

2j ) ≈ 2j g̃j,l = 2j/2gj,l

Ψ(f) = Φ( f2 )
H(

f
2 )√
2 Φ(f) = Φ( f2 )

G(
f
2 )√
2

Ψ(f) =
H(

f
2 )√
2

∏∞
m=2

G(
f

2m )√
2 Φ(f) =

∏∞
m=1

G(
f

2m )√
2

ψj,k(t) ≡ ψ( t
2j − k)/

√
2j φj,k(t) ≡ φ( t

2j − k)/
√

2j

ψ(t) =
√

2
∑

l h̄lφ(2t− l) φ(t) =
√

2
∑

l ḡlφ(2t− l)

wj,k =
∫
x(t)ψj,k(t) dt vj,k =

∫
x(t)φj,k(t) dt

wj,k =
∑

l hlvj−1,2k−l vj,k =
∑

l glvj−1,2k−l

Table 499. Key relationships involving (i) wavelet and scaling filters {hl} and {gl} and their
time reverses {h̄l} and {ḡl} and (ii) wavelet functions ψ(·) and scaling functions φ(·).
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Figure 519. Squared gain function A(·) for the filter {a0 = −1/
√

2, a1 = 0, a2 = 0, a3 =
−1/

√
2}.
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Figure 524. Wavelet and scaling coefficients for a level J0 = 3 partial LA(8) DWT of a time
series {Xt : t = 0, . . . , 127} that is zero everywhere for X63 = 1. The tth value of Xt is
associated with actual time t+17, so X63 is associated with actual time 80, which is indicated
by the thin vertical lines in the plots above.


