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Summary. Discrete wavelet transforms (DWTs) are mathematical tools that are
useful for analyzing geophysical time series. The basic idea is to transform a time
series into coefficients describing how the series varies over particular scales. One
version of the DWT is the maximal overlap DWT (MODWT). The MODWT leads to
two basic decompositions. The first is a scale-based analysis of variance known as the
wavelet variance, and the second is a multiresolution analysis that reexpresses a time
series as the sum of several new series, each of which is associated with a particular
scale. Both decompositions are illustrated through examples involving Arctic sea ice
and an Antarctic ice core. A second version of the DWT is the orthonormal DWT
(ODWT), which can be extracted from the MODWT by subsampling. The relative
strengths and weaknesses of the MODWT, the ODWT and the continuous wavelet
transform are discussed.

1 Introduction

The wide-spread use of wavelets to analyze data in the geosciences can be
traced back to work by Morlet and coworkers [1, 2] in the early 1980s. Their
efforts were motivated by signal analysis in oil and gas exploration and re-
sulted in the continuous wavelet transform (CWT). Work in the late 1980s
by Daubechies, Mallat and others [3, 4, 5, 6] led to various discrete wavelet
transforms (DWTs), which are the focus of this article. While CWTs and
DWTs are closely related, DWTs are more amenable to certain types of sta-
tistical analysis, making them the transform of choice for tackling certain –
but not all – problems of interest in geophysical data analysis. The intent of
this article is to give an overview of how DWTs can be used in the analysis
of geophysical time series, i.e., a sequence of observations recorded over time
(usually at regularly spaced intervals such as once per second).

The remainder of this article is structured as follows. In Sect. 2 we review
the important notion of scale and the basic ideas behind the maximal overlap
DWT (MODWT). The MODWT leads to two basic decompositions. The first
(the subject of Sect. 3) is a scale-based analysis of variance known as the
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wavelet variance (or wavelet spectrum). The second (Sect. 4) is an additive
decomposition known as a multiresolution analysis, in which a time series is
reexpressed as the sum of several new series, each associated with a particular
physical scale. In Sect. 5 we discuss another form of the DWT known as the
orthonormal DWT (ODWT) that can be extracted from the MODWT and
that has certain strengths and weaknesses in comparison to the MODWT.
Our overview concentrates on the so-called Haar wavelet, but we note the
existence of other wavelets in Sect. 6 and discuss why they might be preferred
over the Haar wavelet for certain types of analyses. Finally we make some
concluding comments in Sect. 7, including a comparison of the strengths and
weaknesses of DWTs and CWTs.

2 Maximal Overlap Discrete Wavelet Transform

Let Xn, n = 0, 1, . . . , N − 1, represent the nth value of a time series that has
N values in all. We assume that, for all n, the time at which Xn was observed
can be expressed as t0 + n ∆, where t0 is the time associated with X0, and ∆
is the sampling interval between any two adjacently recorded values Xn and
Xn+1. Given τj = 2j−1 for some positive integer j, consider

Aj,n =
1
τj

τj−1∑
l=0

Xn−l , (1)

which is the average of τj adjacent values of the series starting with Xn−τj+1

and ending at Xn. We refer to the above as a scale τj average. The variable τj

is sometimes called a dyadic scale since its values are restricted to be powers
of two. It is a dimensionless scale that is associated with a physical scale of
τj ∆. Since τ1 = 1 and hence A1,n = Xn, we can think of the original series
as being unit scale ‘averages’.

The definition for Aj,n makes sense as long as τj−1 ≤ n ≤ N−1; however,
Aj,n is ill-defined when τj ≥ 2 and 0 ≤ n ≤ τj − 2 because (1) would then
involve X−1 and possibly other values of the time series we don’t have access
to. To force Aj,n to be well defined for the full range 0 ≤ n ≤ N − 1, we
assume that the time series is periodic with a period of N ; i.e., Xn = Xn+N

for all integers n. With this definition, X−1 = XN−1, X−2 = XN−2 and so
forth. This assumption introduces some ‘boundary’ averages such as A2,0 =
(X0 + XN−1)/2, which combine nonadjacent values from the original series
when N > 2. For τ2 = 2, the only possible boundary average is A2,0, while
the other N − 1 averages A2,1, . . . , A2,N−1 involve adjacent values from the
time series.

If we let aj,l = 1/τj for 0 ≤ l ≤ τj − 1, we can reexpress (1) in filtering
notation as

Aj,n =
τj−1∑
l=0

aj,lXn−l , n = 0, 1, . . . , N − 1 .
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The left-hand portion of Fig. 1 shows the filters aj,l for the dyadic scales
indexed by j = 1, 2, 3 and 4 (we define aj,l to be zero when l < 0 or l ≥ τj).

j=4
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j=1
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l

Fig. 1. Averaging filters aj,l (left-hand panel) for dyadic scales τj = 2j−1, j =
1, 2, 3 and 4, and related differencing filters dj,l (right). The averaging filters are
proportional to Haar scaling filters, and the differencing filters, to Haar wavelet
filters.

While averages of time series over various scales are of interest in their own
right, what is often of more interest is how these averages change over time.
For example, a key question about various indicators of climate is whether
their average values over certain time scales have changed significantly with
time. The wavelet transform is a mechanism that allows us to quantify how
averages of a time series over particular scales change from one interval of
time to the next. These changes are quantified in wavelet coefficients, which
form the bulk of any DWT.

Wavelet coefficients in a DWT are organized into sets. There is one set
for each dyadic scale τj , and each coefficient in this set is proportional to
the difference between two adjacent nonoverlapping averages. Mathematically,
these differences are given by

Dj,n = Aj,n − Aj,n−τj =
2τj−1∑
l=0

dj,lXn−l , n = 0, 1, . . . , N − 1 , (2)

where
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dj,l =

⎧⎨
⎩

1/τj , l = 0, . . . , τj − 1 ;
−1/τj , l = τj , . . . , 2τj − 1 ;

0, otherwise.
The right-hand portion of Fig. 1 shows the differencing filters dj,l associated
with the averaging filters aj,l. If Dj,n is close to zero, then Aj,n−τj and Aj,n

are close to each other, indicating that there is not much change in these
adjacent nonoverlapping averages of scale τj ; on the other hand, if Dj,n has a
large magnitude, then the two scale τj averages differ considerably.

We can now define the Haar maximal overlap discrete wavelet transform
(MODWT) of maximum level J0, where J0 is a positive integer that we are free
to select. This transform consists of J0 +1 sets of N coefficients, for a total of
(J0+1)×N coefficients in all. There are J0 sets of wavelet coefficients, and the
remaining set consists of the so-called scaling coefficients. For j = 1, . . . , J0,
the wavelet coefficients are given by W̃j,n = Dj,n/2, while the single set of
scaling coefficients is given by ṼJ0,n = AJ0+1,n, where n = 0, 1, . . . , N − 1 in
both cases. Let X be an N dimensional column vector containing the time
series Xn, and let W̃j be a similar vector containing the level j MODWT
wavelet coefficients W̃j,n. We can then write

W̃j = W̃jX , (3)

where W̃j is an N × N matrix whose rows can be deduced by studying (2).
For example, if N = 7 and j = 2 so that τ2 = 2, we find that

W̃2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/4 0 0 0 −1/4 −1/4 1/4
1/4 1/4 0 0 0 −1/4 −1/4
−1/4 1/4 1/4 0 0 0 −1/4
−1/4 −1/4 1/4 1/4 0 0 0

0 −1/4 −1/4 1/4 1/4 0 0
0 0 −1/4 −1/4 1/4 1/4 0
0 0 0 −1/4 −1/4 1/4 1/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that any of the bottom six rows in W̃2 can be obtained by circularly
shifting the row above it to the right by one, a pattern that holds for all
W̃j . Note also that the first three rows yield boundary wavelet coefficients
since they combine together values of the time series that are not contiguous
in time (in general, there are min{2τj − 1, N} boundary coefficients). In a
similar manner, if ṼJ0 is an N dimensional column vector containing the
scaling coefficients ṼJ0,n, then we can write

ṼJ0 = ṼJ0X , (4)

where ṼJ0 is an N × N matrix whose rows are dictated by (1).
In practice the MODWT wavelet and scaling coefficients are not com-

puted directly via (3) and (4), but rather via an efficient recursive procedure
known as the pyramid algorithm (for pseudo-code describing this algorithm,
see pp. 177–178 of [7]).
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3 Analysis of Variance via the Wavelet Variance

The MODWT leads to two basic decompositions for a time series Xn. The
first is an analysis of variance (ANOVA) that is based on a decomposition
of the ‘energy’ in Xn (the second is discussed in Sect. 4). By definition the
energy in a time series is just the sum of its squared values:

N−1∑
n=0

X2
n = XT X = ‖X‖2 ,

where ‘T ’ denotes the transpose operation, and ‖X‖ is the Euclidian norm of
X. This decomposition states that

‖X‖2 =
J0∑

j=1

‖W̃j‖2 + ‖ṼJ0‖2 , (5)

so the energy in the series is preserved in its MODWT wavelet and scaling
coefficients.

Let σ2
X be the sample variance for the time series:

σ̂2
X =

1
N

N−1∑
n=0

(
Xn − X

)2
=

1
N

N−1∑
n=0

X2
n − X

2
, where X =

1
N

N−1∑
n=0

Xn .

It follows from (5) that

σ̂2
X =

1
N

J0∑
j=1

‖W̃j‖2 +
1
N

‖ṼJ0‖2 − X
2

. (6)

In the above, we refer to ‖W̃j‖2/N = ν̂2
j as the empirical wavelet variance.

We can regard ν̂2
j as an appropriate definition for the sample variance of

the level j wavelet coefficients. This assumes that the mean value of W̃j

can be taken to be zero, which is reasonable for certain Xn because of the
differencing operation inherent in the filters used in (2). On the other hand,
1
N ‖ṼJ0‖2 −X

2
is the sample variance of the scaling coefficients because ṼJ0

is a running average of X and hence has a sample mean of X. Equation (6)
thus gives us a scale-based ANOVA, in that we are breaking σ̂2

X up into J0 +1
pieces, each of which can be interpreted in terms of sample variances of either
differences in averages over the dyadic scales τ1, . . . , τJ0 or averages over a scale
of 2τJ0 = τJ0+1. If N = 2J for some positive integer J and if we set J0 = J ,
the contribution to σ̂2

X due to the scaling coefficients drops out because ṼJ0

becomes a vector whose elements are all equal to X, and we then have

σ̂2
X =

1
N

J0∑
j=1

‖W̃j‖2 =
J0∑

j=1

ν̂2
j . (7)
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Fig. 2. Two time series (left-hand plots), each with N = 16 values. Both series have
the same sample means and variances. The right-hand plots show the corresponding
the Haar MODWT wavelet variances over the dyadic scales 1, 2, 4 and 8.

Even if these stipulations on N and J0 are dropped, the above is still a good
approximation as along as J0 is large enough so that τJ0+1 is close to N .

To see how the wavelet variance can help characterize time series, consider
the two artificial series shown in the left-hand column of plots in Fig. 2. By
construction both series have exactly the same sample mean and variance,
but their appearances are quite different. Series (a) varies more slowly than
series (b), which tends to fluctuate back and forth from one time point to the
next. The right-hand plots show the corresponding empirical wavelet vari-
ances versus the dyadic scales τ1, . . . , τ4. The wavelet variances for the two
series have their largest values at different scales, namely, scale τ3 = 4 for (a)
and τ1 = 1 for (b). Small-scale fluctuations are thus an important part of the
overall variability of series (b), but less so for (a), where larger scale fluctua-
tions are more prominent. Although the sample mean and variance are here
incapable of distinguishing between the two series, the scale-based ANOVA
given by the wavelet variance can in a manner that is intuitively reasonable.

The next two subsections consider ‘real world’ examples, both involving
Arctic sea ice. Other examples of the use of the wavelet variance in geophysics
include the study of the El Niño–Southern Oscillation [8], surface albedo and
temperature in desert grasslands [9], soil variations [10], the relationship be-
tween rainfall and runoff [11], ocean surface waves [12], solar coronal activ-
ity [13], North Atlantic sea levels [14], atmospheric turbulence [15] and the
impact of large multi-purpose dams on water temperature variability [16].
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Fig. 3. Portion of a series of Arctic ice thickness measurements Xn versus distance
along a submarine track (upper plot), along with four binary-valued series (lower)
indicating the absence/presence (0/1) of four ice types: leads and new ice (defined

as Xn < 0.3 m and denoted as X
(1)
n ), first year ice (0.3 ≤ Xn < 2, X

(2)
n ), medium

multiyear ice (2 ≤ Xn < 5, X
(3)
n ) and ridged ice (Xn ≥ 5, X

(4)
n ). The sampling

interval is ∆ = 0.001 km. The horizontal dashed lines in the upper plot depict
the defining boundaries for the ice types. These data were taken near the North
Pole in April of 1991 and are archived at the National Snow and Ice Data Center
(http://nsidc.org/).

3.1 Wavelet Variance Analysis of Arctic Ice Types

Naval submarines with upward-looking sonars have collected data on sea-ice
thickness in the Arctic Ocean since 1958. Currently data from 34 cruises con-
ducted by the U.S. Navy between 1975 and 2000 have been publically archived.
These data provide a unique direct look at the climatology of Arctic ice thick-
ness as a function of space and time. The upper plot of Fig. 3 shows a 0.75 km
portion of one such series of ice thickness measurements Xn (in meters) taken
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near the North Pole in April of 1991 (the entire set of measurements extends
over 50 km). We can regard Xn as a time series with ∆ = 0.001 km, where
here ‘time’ is considered as a surrogate for distance along the submarine track
under the ice (the observations were recorded at regular intervals of time, but
the submarine was moving at a constant speed).
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Fig. 4. Empirical Haar wavelet variances ν̂2
j versus physical scales τj ∆, j =

1, 2, . . . , 14, for the four binary-valued ice type series X
(i)
n shown in Fig. 3. The

vertical lines emanating from each ν̂2
j for X

(1)
n represent 95% confidence intervals

for a hypothesized theoretical wavelet variance. The largest wavelet variances for
each ice type are indicated by a solid diamond – their locations define wavelet-based
characteristic scales.

Ice thickness can be classified into four types, which are driven by different
physical processes [17, 18]. The first type consists of leads and new ice and
has a thickness below 0.3 m; the second is first year ice and ranges from 0.3 to
2 m; the third is medium multiyear ice, from 2 to 5m; and the fourth is ridged
ice, anything above 5 m. The divisions between the four types are marked on
Fig. 3 by horizontal dashed lines. Let X

(i)
n be a binary-valued series indicating

the absence or presence (using 0 or 1) of ice type i at measurement Xn. These
four indicator series are plotted in the bottom of Fig. 3.

Figure 4 shows empirical Haar wavelet variances for the four indicator
series X

(i)
n plotted versus τj ∆ for j ranging from 1 to 14 (i.e, physical scales

from 0.001 up to 8.192 km). If we regard ν̂2
j as an estimate of a hypothesized

theoretical wavelet variance, we can determine how far our estimates are likely
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to be off from the true wavelet variances (for details, see Chap. 8 of [7]). The
vertical lines in Fig. 4 indicate 95% confidence intervals (CIs) for the true
wavelet variances for ice type 1 (the three other ices types would have CIs
with similar widths). Note that the widths of the CIs increase as τj increases.

All four wavelet variance curves in Fig. 4 have a single broad peak. The
largest ν̂2

j for each ice type is marked with a solid diamond. While the scale at
which the largest value occurs is similar for types 2, 3 and 4 (either 16 or 32 m),
the one for type 1 is an order of magnitude larger (256 m). We can consider
the location of these peak values as defining a characteristic scale for each
ice type. A question of geophysical interest is how stable these characteristic
scales are both spatially and temporally. This question can be addressed by
using ν̂2

j to determine these scales from data taken at other locations and
times across the Arctic basin. For this application, the wavelet variance thus
extracts a summary statistic that picks out the largest scale-based contributor
to the sample variance of an ice-type indicator series, and this statistic can be
studied across space and time to deduce possible changes in the climatology
of Arctic ice thickness.
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Fig. 5. Arctic ice thickness residuals Xn versus distance along a submarine track.
The residuals are the deviations from a least squares fit of a line to a series of 1 km
average thicknesses (the sampling interval ∆ is also 1 km). There are N = 803
thickness measurements, and these were collected from a SCientific ICe EXpedition
(SCICEX) cruise within the Arctic Ocean in September of 1997 and are archived at
the National Snow and Ice Data Center (http://nsidc.org/).

3.2 Wavelet Variance Analysis of Averaged Ice Thickness

As a second example, let us consider another series of ice thickness mea-
surements, but now consisting of one kilometer averages that have been de-
trended by subtracting off a line fit via least squares (the sampling interval is
∆ = 1 km). The residuals from this fit are plotted in Fig. 5.
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Fig. 6. Empirical Haar wavelet variances ν̂2
j versus physical scales τj ∆, j =

1, 2, . . . , 9, for the residual thickness series shown in Fig. 5. The vertical lines ema-
nating from each ν̂2

j represent 95% confidence intervals for a hypothesized theoretical
wavelet variance. The line through the variances is a least squares fit of log10(ν̂

2
j )

versus log10(τj ∆) and has a slope of −0.53.

The empirical wavelet variances ν̂2
j for j = 1, . . . , 9 for the residual thick-

nesses are shown in Fig. 6, along with 95% confidence intervals for a hypothe-
sized theoretical wavelet variance (the vertical lines). A linear least squares fit
of log10(ν̂2

j ) versus log10(τj ∆) is also shown (the line with a slope of −0.53).
With 1 km averaging, the largest wavelet variance occurs at the smallest
scale, but what is of more interest is the rate of decay of ν̂2

j with increas-
ing scale. This decay is very close to linear on a log/log scale. This form of
decay is indicative of a stationary process whose spectral density function
(SDF) S(f) is approximately proportional to a power law |f |α, where f is
a Fourier frequency. For such a process, it can be argued that the theoreti-
cal wavelet variance should be approximately proportional to τ−α−1

j , which
implies that a log/log plot of ν̂2

j versus τj ∆ should be approximately linear,
with a slope given by −α − 1. The observed slope of −0.53 thus maps into a
power-law exponent of α = −0.47. A process whose SDF is proportional to
|f |−0.47 exhibits long-range dependence, which is characterized by an autoco-
variance function that decays at a slower rate than standard models such as
autoregressive and/or moving average processes. This slower rate of decay has
implications in assessing the sampling variability in various statistics derived
from ice thickness measurements (for details, see [19, 20]).
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4 Multiresolution Analysis

We now turn to the second basic decomposition afforded by the MODWT,
which is an additive decomposition known in the wavelet literature as a mul-
tiresolution analysis (MRA). This decomposition says that we can reexpress
X as the sum of J0 + 1 new time series, each of which has a scale-based
interpretation. In particular, define

D̃j = W̃T
j W̃j and S̃J0 = ṼT

J0
ṼJ0 , (8)

where D̃j and S̃J0 are N dimensional vectors known as, respectively, the jth
level detail and the J0th level smooth. We can now write

X =
J0∑

j=1

D̃j + S̃J0 , (9)

where D̃j is a time series reflecting variations in averages over a scale of τj in
X, whereas S̃J0 is a series reflecting averages over a scale of τJ0+1. Note that
we can recover our original time series X from its MODWT, which tells us
that no information about the series has been lost in transforming it and that
(8) constitutes the pieces of an inverse MODWT. Thus, if we know how a time
series varies at the dyadic scales τ1, . . . , τJ0 and if we know its averages over
a scale of τJ0+1, then we can reconstruct the series perfectly. If we compare
(9) to a level J0 + 1 decomposition, namely,

X =
J0+1∑
j=1

D̃j + S̃J0+1,

we can deduce that, for all j,

S̃j = S̃j+1 + D̃j+1 , (10)

and hence the details can be interpreted as the differences between successive
smooths. If N = 2J and if we again set J0 = J , then (9) becomes

X =
J0∑

j=1

D̃j + X1, (11)

where 1 is an N dimensional vector, all of whose elements are ones.
As a simple example of an MRA, let us consider a series X of N = 352

oxygen isotope measurements from an ice core taken at one location on a spa-
tial array with 3.5 to 7 km spacing in Dronning Maud Land, Antarctica. Here
the spacing between observations is taken to be ∆ = 0.5 years (the raw mea-
surements are indexed by distance along the core, but these are then mapped
to values at half-year intervals). The series is plotted in the upper panel of
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Fig. 7. Oxygen isotope measurements from an Antarctic ice core (top panel), along
with a Haar MODWT-based multiresolution analysis of level J0 = 1 consisting of
the smooth series S̃1 and a single detail series D̃1 (bottom panel, upper and lower
plots, respectively). Due to the large difference between the beginning and end of the
series, the MODWT was computed using so-called reflection boundary conditions
rather than the periodic conditions described in Sect. 2 (for details, see p. 140 of
[7]). Data is courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental
Centre, Tromsø, Norway.

Fig. 7 and has a temporal span of 176 years. For each of the cores in the array,
an MRA was conducted in order to compare details with similar scales to as-
certain which scales are dominated by environmental noise and which might
contain a common signal (see [21] for details). Here we demonstrate that the
simplest possible MRA for the core shown in Fig. 7 reveals some interesting
properties not readily apparent in a plot of the data itself.

The lower panel of Fig. 7 depicts a level J0 = 1 Haar MODWT-based
MRA, consisting of a smooth series S̃1 and a single detail series D̃1, which,
upon being added together, yield X. The smooth series is the portion of X
that can be attributed to averages over a scale of a year, whereas the detail
series represents variations over a half-year scale. What is interesting is that
the local variability in D̃1 increases gradually with the passage of time. This
increase is not readily apparent in the plot of X itself, but the MRA pulls it out
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clearly. The physical mechanism behind this increase is not fully understood,
but is thought to be due to diffusion.

In addition the MRA reveals an artifact in D̃1 centered at 1981, around
which the detail series is flat for a stretch of 5.5 years. This is due to a linear
interpolation scheme used to fill in a break in the ice core. Differencing a series
of the form Xn = a + bn leads to wavelet coefficients that are proportional to
the slope b and a detail series that is flat. For the questions that this MRA
and those for other cores in the spatial array were used to address, filling
in a small number of short gaps by linear interpolation is acceptable. Had
we been interested in estimating the wavelet variance for a series with many
gaps, linear interpolation could bias the estimates unacceptably towards zero.
In this case it is advisable to use either a wavelet variance estimator that
is specifically designed to work with gappy time series [22] or a stochastic
interpolation scheme that preserves the small scale properties of the time
series based upon a nominal stochastic model (see [19], Appendix B).

Other examples of the use of MRAs in geophysics include the analysis of
subtidal sea level fluctuations [23], magnetic storm activity [24], the Lisbon
and Gibraltar North Atlantic Oscillation winter indices [25], spatial variation
of microflora abundance in agricultural soil [26], the December 26th 2004
tsunami as recorded along the southeastern coast of Brazil [27] and large-
scale coherent structures in turbulent separation bubbles [28].

5 Orthonormal Discrete Wavelet Transform

While a level J0 MODWT of a time series of length N consists of a total of
(J0 + 1) × N values, it is also possible to define a discrete wavelet transform
that consists of just N values. This transform is orthonormal, which means
that the transpose of N×N matrix W relating the time series to the transform
coefficients is the inverse of W. We hence use the acronym ‘ODWT’ to denote
this transform. We can readily define the ODWT in terms of the MODWT if
N happens to be an integer multiple of 2J0 (if N is not of this form, an ODWT
can still be defined, but not as easily – see pp. 141–145 of [7] for details). The
ODWT wavelet coefficients are given by

Wj,n = 2j/2W̃j,2j(n+1)−1 , n = 0, 1, . . . ,
N

2j
− 1 , j = 1, 2, . . . , J0 ;

i.e., the ODWT coefficients are obtained by subsampling and rescaling the
MODWT coefficients. For example, at level j = 1, the ODWT coefficients are
formed by taking the MODWT coefficients with odd indices and multiplying
them by

√
2, whereas, at level j = 2, we subsample every fourth coefficient

and multiply them by 2:
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√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̃1,1

W̃1,3

W̃1,5

...
W̃1,N−3

W̃1,N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W1,0

W1,1

W1,2

...
W1, N

2 −2

W1, N
2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= W1 & 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̃2,3

W̃2,7

W̃2,11

...
W̃2,N−5

W̃2,N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W2,0

W2,1

W2,2

...
W2, N

4 −2

W2, N
4 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= W2 .

As the level j increases, we need to subsample fewer and fewer MODWT
wavelet coefficients in order to create the corresponding ODWT coefficients
in Wj . In a similar manner the ODWT scaling coefficients are defined by

VJ0,n = 2J0/2ṼJ0,2J0 (n+1)−1, n = 0, 1, . . . , NJ0 − 1 ,

and can be placed in an NJ0 dimensional vector denoted as VJ0 . The ODWT
of level J0 consists of the collection of vectors W1, W2, . . . , WJ0 and VJ0 ,
whose dimensions are, respectively, N/2, N/4, . . . , N/2J0 and N/2J0 , which
collectively sum to N .

As was true for the MODWT, the ODWT leads to a scale-based ANOVA
and an MRA. We start by considering the analogs of (3) and (4):

Wj = WjX and VJ0 = VJ0X , (12)

where Wj is an N
2j ×N matrix whose rows are selected rescaled rows from W̃j ,

while VJ0 is an N
2J0 × N matrix whose rows are selected rescaled rows from

ṼJ0 . The ODWT-based ANOVAs and MRAs are easy to state: just remove
all the tildes from Equations (5) through (11)! In practice the ODWT wavelet
and scaling coefficients are not computed by subsampling the corresponding
MODWT coefficients, but rather via an efficient pyramid algorithm (pseudo-
code for this algorithm is given on pp. 100–101 of [7]).

In general, MODWT-based ANOVAs and MRAs tend to perform better
than their ODWT equivalents because of the deleterious effect that subsam-
pling can have on the ODWT (for details, see Sects. 5.1, 5.6 and 8.3 of [7]);
however, the ODWT is the transform of choice for certain other types of anal-
yses. For example, if a time series can be modeled as a signal plus Gaussian
white noise, then its ODWT consists of a transformed signal plus Gaussian
white noise. Certain types of signals are more easily recognized in the ODWT
domain than in their original time domain representation, which makes it pos-
sible to design effective data-adaptive procedures for extracting signals buried
in white noise. This fact is exploited in the large body of literature devoted
to wavelet shrinkage; see [29] for a recent review article that emphasize this
use of the ODWT. (There is a device called ‘cycle spinning’ in which ODWT-
based signal extraction is applied to a time series and all its possible circular
shifts, followed by an averaging of the N extracted signals. This procedure
is equivalent to a signal estimation procedure based upon the MODWT; for
details, see pp. 429–431 of [7]).
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As a second example, the ODWT transforms certain – but not all – time
series into a collection of wavelet coefficients that are approximately uncor-
related within and between levels, but that have possibly level-dependent
variances. Time series with long-range dependence are examples of ones that
are effectively decorrelated by the ODWT. This decorrelating property can
be put to good use in formulating wavelet-based approximate maximum like-
lihood estimators of parameters associated with processes with long-range
dependence, in simulating series with long-range dependence and in formu-
lating bootstrap procedures for assessing the sampling variability in certain
statistics (for details, see [7, 30]).

6 Beyond the Haar Wavelet

Our discussion so far has focused on the Haar MODWT and corresponding
ODWT, but there are other versions of both transforms. For a selected max-
imum level J0, these transforms can be formulated in terms of wavelet filters
of levels j = 1, . . . , J0 and a scaling filter of level J0. Figure 8 shows the
level j = 3 wavelet filters for the Haar transform and LA(8) transform, where
‘LA(8)’ stands for the member of the Daubechies ‘least asymmetric’ family
whose level j = 1 filter has width L = 8 [31]. The shape of the Haar filter
tells us that the corresponding wavelet coefficients are proportional to differ-
ences of adjacent simple averages of scale 4. The shape of the LA(8) filter
says that the wavelet coefficients can be interpreted as the difference between
a centrally located weighted average and weighted averages occurring before
and after it. Once the wavelet and scaling filters have been used to properly
formulate the matrices W̃j , ṼJ0 , Wj , and VJ0 of (3), (4) and (12), all of the
equations involving the Haar MODWT and ODWT presented in Sects. 2 to 5
also hold for the corresponding LA(8) transforms.

Haar

LA(8)

0 10 20 30 40 50

Fig. 8. Filters used to produce scale τ3 wavelet coefficients based upon the Haar
wavelet filter (top) and the Daubechies least asymmetric wavelet filter of width 8
(bottom).
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The LA(8) transform can yield a more informative ANOVA and MRA
than the Haar for certain time series because the latter can suffer from ‘leak-
age’ effects in which the wavelet coefficients for a particular scale are locked
into patterns driven by a nearby dominant scale. The fact that the wavelet
coefficients are highly correlated between different levels is undesirable be-
cause the transform is then not successfully partitioning out different aspects
of a time series into different coefficients. In many geophysical applications,
including the ones used as examples in Sects. 3 and 4, an analysis based upon
the Haar wavelet is entirely adequate, and there is no need to consider other
wavelets. An effective procedure for deciding if the Haar wavelet is adequate
or not is to compare analyses based upon the Haar wavelet with those based
upon other wavelets. If the analyses are basically the same, there is no need
to use anything other than the Haar; if not, an analysis using something other
than the Haar wavelet might be called for. Use of non-Haar MODWTs and
ODWTs produces more boundary coefficients, so there is a price to pay in
abandoning a Haar-based analysis.

7 Concluding Comments

Hopefully the overview presented here has given the reader some idea of the
potential uses of DWTs in analyzing geophysical time series. There are many
aspects of wavelet analysis that we have not touched upon, including the fact
that all of the procedures we have discussed can be applied to time series
whose statistical properties are evolving over time. The ability of DWTs to
handle this case, which is eluded to briefly in the MRA for the oxygen series
presented in Fig. 7, is tied up with the fact that the wavelet coefficients extract
information not only across different scales, but also across time. For exam-
ple, a wavelet variance estimator in which the squared wavelet coefficients
are averaged locally rather than globally (as in the construction of ν̂2

j ) is an
effective way of studying time-varying properties in a time series. The reader
should consult [7] for details on this and other aspects of wavelet analysis not
covered in this brief overview.

In Sect. 5 we discussed some of the relative strengths and weaknesses of the
MODWT and the ODWT. These DWTs are closely related to corresponding
continuous wavelet transforms (CWTs), which also are quite commonly used
to analyze geophysical time series. A CWT might be called an ‘anti-statistic’
in the sense that, rather than summarizing the information in a time series,
it converts it into a two-dimensional field. As a result, there is a considerable
amount of redundant information in a CWT, which is both a strength and a
weakness. One example where this redundancy is a strength is in the analysis
of certain types of singularities (‘cusps’), where the nature of the singularity
can be deduced by tracing the wavelet transform modulus maxima across a
fine grid of scales (see, e.g., [32], Fig. 6.5). The dyadic scales used in DWTs are
typically too coarsely spaced to make this type of singularity analysis feasible.
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The redundancy in the CWT, however, can make proper interpretation
of ‘heat’ plots of the CWT problematic, i.e., scale versus time plots in which
the magnitudes of the CWT coefficients are color-coded. These plots often
have rather striking structures that our eyes are drawn toward, but that can
be largely attributed to the fact that CWT coefficients are typically highly
correlated both spatially and temporarily. Proper statistical assessment of the
significance of these structures involves some subtle issues [33], particularly
if they are picked out by eye prior to being assessed. Subsampling to the
dyadic scales in the MODWT and ODWT essentially breaks this correlation
structure spatially, and subsampling the MODWT to get the ODWT does the
same temporarily. The fact that collections of coefficients from these DWTs
are approximately uncorrelated makes it easier to devise statistical tests and to
implement bootstrapping procedures (the latter are not feasible with CWTs).

Finally we note that the CWT does not formally involve components in a
time series that are handled in DWTs by the scaling coefficients. These are
often useful for extracting large-scale trends that are an important part of
some geophysical time series and that are a key component in wavelet-based
signal extraction.
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