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Abstract
Abstract—We discuss the problem of generating re-

alizations of length N from a Gaussian stationary pro-
cess {Yt} with a specified spectral density function SY (·).
We review three methods for generating the required re-
alizations and consider their relative merits. In particu-
lar, we discuss an approximate frequency domain tech-
nique that is evidently used frequently in practice, but
that has some potential pitfalls. We discuss extensions
to this technique that allow it to be used to generate re-
alizations from a power-law process with spectral density
function similar to S(f) = |f |α for α < 0.

I. Introduction
Let {Yt} be a real-valued Gaussian stationary pro-

cess with spectral density function (sdf) SY (·), autocor-
relation sequence (acvs) {sτ,Y } and zero mean. If we de-
fine the sampling time between observations Yt and Yt+1

to be unity so that the Nyquist frequency is 1
2 , then the

acvs is related to the sdf via the usual relationship

sτ,Y =
∫ 1

2

− 1
2

SY (f)ei2πfτ df, where i ≡
√
−1. (1)

A problem of considerable practical interest is to gener-
ate a sample of length N of this process (i.e., a realization
of Y0, . . . , YN−1) on a digital computer by suitably trans-
forming samples of a zero mean, unit variance Gaussian
white noise process {Wt}. In this paper we discuss three
methods for doing this: an exact time domain method
that is valid for all sdf’s (Section II), an exact frequency
domain method that is valid only for some sdf’s (Sec-
tion III), and an approximate frequency domain method
that can be used for all sdf’s (Section IV). We place par-
ticular emphasis on generating time series from station-
ary and nonstationary power-law (long memory) pro-
cesses (Sections V and VI). (The three methods we dis-
cuss here are certainly not the only ones that have been
advocated in the literature—one important omission is
an approximate time domain method based upon the
class of autoregressive-moving average models.)

* Except for a few minor corrections made here, this
paper appeared in Computing Science and Statistics, 24
(1992), pp. 534–538.

II. An Exact Time Domain Method
If the acvs {sτ,Y } is readily known out to lag N −1,

there are well-known time domain techniques for gener-
ating samples of {Yt} (see, for example, Franklin, 1965).
Typically these involve an lower-upper Cholesky factor-
ization of the inverse of the N -th order Toeplitz covari-
ance matrix for Y0, . . . , YN−1 (see Demeure and Scharf,
1987, for a good review). This factorization can be ac-
complished using the Levinson-Durbin recursions and
then used to generate the desired samples, as follows.
Let W0, . . . ,WN−1 be a set of N independent and iden-
tically distributed Gaussian random variables (rv’s) with
zero mean and unit variance. With Y0 = σ0W0, we gen-
erate the N − 1 remaining samples recursively via

Yt =
t∑

j=1

φj,tYt−j + Wtσt, t = 1, . . . , N − 1.

The σt’s and φj,t are obtained by first setting σ2
0 = s0,Y

and then recursively computing for t = 1, . . . , N − 1

φt,t =
st,Y −

∑t−1
j=1 φj,t−1st−j,Y

σ2
t−1

φj,t = φj,t−1 − φt,tφt−j,t−1, 1 ≤ j ≤ t− 1

σ2
t = σ2

t−1

(
1 − φ2

t,t

)

(for t = 1 the summation in the first equation is taken
to be 0, and the second equation is skipped).

There are two potential drawbacks to this exact
method. First, once we have computed the σt’s and
φj,t’s, the number of floating point operations needed to
generate a sample of length N is O(N2). There are ways,
however, of reducing this number to O(N) if in fact the
Toeplitz matrix possesses enough special structure (this
is the case if, for example, {Yt} is an autoregressive-
moving average process—see Kay, 1981, for details). Sec-
ond, if we are given the sdf SY (·) instead of the acvs, we
must first obtain the required sτ,Y ’s. In principle this can
always be done via numerical integration, but in practice
this approach can be error-prone and time consuming.

III. An Exact Frequency Domain Method
Davies and Harte (1987) recently outlined a fre-

quency domain technique for simulating {Yt} that makes
use of a fast Fourier transform (fft) algorithm and hence
requires only O(N log(N)) operations. As these authors
noted, their method is not completely general in that it
can fail to work for some processes. The situations for
which their method is applicable are easily described by
a nonnegativity constraint. Their method has in fact
appeared previously in the literature in the context of



simulating Gaussian moving average processes of order
q, for which the nonnegativity constraint holds as long
as N is greater than q (see Davis, Hagan, and Borgman,
1981, and the discussion of their work in Ripley, 1987).

Let M be any even positive integer (typically a
power of 2), and define fj = j

M . Let

Sj ≡
M
2∑

τ=−(M
2 −1)

sτ,Y e−i2πfjτ , 0 ≤ j ≤ M

2
. (2)

Note that we can rewrite the above as

Sj =




M
2∑

τ=0

sτ,Y e−i2πfjτ +
M−1∑

τ= M
2 +1

sM−τ,Y e−i2πfjτ


 ,

so we can obtain the Sj ’s via the discrete Fourier trans-
form of the following sequence of length M :

s0,Y , s1,Y , . . . , sM
2 −1,Y , sM

2 ,Y , sM
2 −1,Y , sM

2 −2,Y , . . . , s1,Y .

We can also reexpress Equation (2) as

Sj = sM
2 ,Y (−1)j +

∫ 1
2

− 1
2

W (fj − f)SY (f) df,

where

W (f) ≡ sin((M − 1)πf)
sin(πf)

.

Because W (·) oscillates between positive and negative
values and because sM

2 ,Y (−1)j can be negative, it is
possible that some of the Sj ’s are negative. Note, how-
ever, that, if {Yt} were a moving average process of order
q ≤ M

2 − 1 so that sτ,Y = 0 for |τ | ≥ M
2 , then we would

have Sj = SY (fj) so that Sj ≥ 0. In order for the simula-
tion method to work, we must impose the nonnegativity
constraint that Sj ≥ 0 for 0 ≤ j ≤ M

2 .
Let W0, . . . ,WM−1 be a set of M independent and

identically distributed Gaussian rv’s with zero mean and
unit variance. Define

Vj ≡




√
S0W0, j = 0;√
1
2Sj (W2j−1 + iW2j) , 1 ≤ j < M

2 ;√
SM

2
WM−1, j = M

2 ;

V∗
M−j ,

M
2 < j ≤ M − 1

(the asterisk denotes complex conjugation). Note that

cov{Vj ,Vk} = E{V∗
j Vk} =

{
Sj , if j = k;
0, otherwise.

We next define the process {Vt} via

Vt ≡
1√
M

M−1∑
j=0

Vje
−i2πfjt, t = 0, . . . ,M − 1. (3)

By construction, the process {Vt} is real-valued. Because
Vt is a linear combination of Gaussian rv’s, the process
is Gaussian. A straight-forward exercise shows that {Vt}
is a stationary process with zero mean and acvs {sτ,V }
given by

sτ,V =
1
M

M−1∑
j=0

Sje
i2πfjτ . (4)

In contrast to {Yt}, however, the stationary process {Vt}
is a harmonic process; i.e., it does not possess an sdf,
but its spectral properties are given by an integrated
spectrum that is a step function with steps at the ±fj ’s.
This fact implies that realizations of {Vt} are periodic
with period M , and hence so is its acvs {sτ,V }. Note
that, if M is a power of 2, we can readily compute both
{Vt} and {sτ,V } using a conventional fft algorithm.

By substituting the definition for Sj in Equation (2)
into Equation (4) and interchanging the order of the two
summations, we obtain

sτ,V =
1
M

M
2∑

ρ=−(M
2 −1)

sρ,Y


M−1∑

j=0

e−i2πfj(τ−ρ)


 .

From the result

M−1∑
j=0

e−i2πfjη =
{

M, for η = 0,±M,±2M, . . .;
0, otherwise,

we obtain

sτ,V = sτ,Y for all |τ | ≤ M

2
.

Hence the statistical properties of V0, . . . , VN−1 are iden-
tical to those of Y0, . . . , YN−1 if we set N ≤ M

2 .
As is true for the exact time domain method, we

might need to obtain the required sτ,Y ’s via numerical
integration if we are given the sdf SY (·) instead of the
acvs. Also, because of the nonnegativity constraints on
the Sj ’s, this method cannot be used for all stationary
processes. As we noted previously, it does work for mov-
ing average processes of order q ≤ M

2 − 1. Since every
nonnegative lag window spectral estimate has an sdf cor-
responding to that of a high order moving average pro-
cess, this exact frequency domain method is useful for
simulating time series from such spectral estimates.



IV. An Approximate Frequency Domain Method

We consider here the construction of a zero mean
Gaussian process {Ut} whose acvs {sτ,U} agrees—to a
good approximation—with {sτ,Y } out to lag N − 1. To
begin with, we make the assumption that the sdf SY (·)
is continuous over [− 1

2 ,
1
2 ] (we relax this restriction in

the next section). Let M be any even integer greater
than or equal to the desired sample size N . Let Wj ,
j = 0, . . . ,M − 1, be a set of M independent and identi-
cally distributed Gaussian rv’s with zero mean and unit
variance. Let fj ≡ j

M as before. We define the process
{Ut} via

Ut ≡
1√
M

M−1∑
j=0

Uje
−i2πfjt, t = 0, . . . ,M − 1, (5)

where

Uj ≡




√
SY (0)W0, j = 0;√
1
2SY (fj) (W2j−1 + iW2j) , 1 ≤ j < M

2 ;√
SY ( 1

2 )WM−1, j = M
2 ;

U∗
M−j ,

M
2 < j ≤ M − 1.

By construction, {Ut} is a real-valued Gaussian process.
A straight-forward exercise shows that {Ut} is a station-
ary process with zero mean and acvs {sτ,U} given by

sτ,U =
1
M

M−1∑
j=0

S(fj)ei2πfjτ (6)

(note that this acvs can readily be computed using an
fft). In contrast to {Yt}, however, the stationary process
{Ut} is a harmonic process (as was the case with the Vt’s
in Equation (3)).

Because the right-hand side of Equation (6) can be
regarded as a Riemann sum approximation to the inte-
gral of Equation (1), we have sτ,U ≈ sτ,Y for possibly
some values of τ , but certainly not all: whereas {sτ,U} is
periodic, {sτ,Y } must damp down to 0. Note that, if we
let M be a power of 2, Equation (5) can be quickly com-
puted using a conventional fft algorithm—realizations of
{Ut} of length M can thus be readily generated. By
making M large enough, we can make sτ,U arbitrarily
close to sτ,Y for τ = 0, . . . , N − 1, and hence the simula-
tions of U0, . . . , UN−1 should have statistical properties
that closely match those of Y0, . . . , YN−1.

This scheme was evidently first proposed by Thomp-
son (1973), who advocated just letting M = N . This
formulation is in common use in the physical sciences,

perhaps due to the following result. Consider the peri-
odogram of U0, . . . , UM−1:

Ŝ
(p)
U (f) ≡ 1

M

∣∣∣∣∣
M−1∑
t=0

Ute
−i2πft

∣∣∣∣∣
2

. (7)

If M is a power of 2, we can evaluate the periodogram
quickly over the grid of Fourier frequencies fj using an
fft algorithm. When M = N , we have E{Ŝ(p)

U (fj)} =
SY (fj) by construction—hence realizations of {Ut} have
a periodogram in good apparent agreement with the tar-
get sdf SY (·) at the Fourier frequencies. Unfortunately,
the periodogram for Y0, . . . , YM−1 can be a badly biased
estimator of SY (·), so this intuitively pleasing agreement
is misleading. Figure 1 illustrates this important point.

Mitchell and McPherson (1981) also discussed this
approximate scheme. To avoid the “M = N” prob-
lem discussed above, they advocated that M should be
made larger than N commensurate with the “correlation
length” of {Yt}, but—beyond this brief statement—they
did not provide explicit guidelines for selecting M rela-
tive to N . We can do so by noting the following useful
measure of how well the sτ,U ’s approximate the sτ,Y ’s
for |τ | ≤ N − 1. Let s

(M)
τ,U denote the value of sτ,U gen-

erated using Equation (6) for a particular value of M .
Define S

(M)
U (·) as the function whose Fourier coefficients

are equal to s
(M)
τ,U for |τ | ≤ N − 1 and equal to sτ,Y for

|τ | ≥ N . Parseval’s theorem then tells us that

SS(M) ≡
N−1∑

τ=−(N−1)

∣∣∣s(M)
τ,U − sτ,Y

∣∣∣2

=
∫ 1

2

− 1
2

∣∣∣S(M)
U (f) − SY (f)

∣∣∣2 df.

SS(M) can be interpreted as the average squared dif-
ference between the sdf SY (·) and the function S

(M)
U (·).

As M gets large, SS(M) will decrease to zero. If we
know the sτ,Y ’s, we can readily compute SS(M) and
find a value of M such that S

(M)
U (·) is sufficiently close

to SY (·) in terms of average squared difference. If the
sτ,Y ’s cannot be readily computed, we can increase M
by, say, factors of 2 until

N−1∑
τ=−(N−1)

∣∣∣s(M)
τ,U − s

(2M)
τ,U

∣∣∣2

is small, indicating that the effect of doubling M is small
in that the average squared difference between S

(M)
U (·)

and S
(2M)
U (·) is small. Figure 2 illustrates how increasing

M yields a better approximation to {sτ,Y }.
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Figure 1. The thick curves in plots (a) and (b) show
the true sdf SY (·) (on a decibel scale) for a particu-
lar stationary process {Yt}. The thin bumpy curve in
plot (a) shows the expected value of the periodogram
for a sample of size N = 64 from this process. The thin
bumpy curve in plot (b) shows the expected value of
the periodogram Ŝ

(p)
U (·) of Equation (7) for M = N =

64. If the statistical properties of {Ut} closely matched
those of {Yt}, there would be good agreement between
the two thin bumpy curves, but in fact they are sub-
stantially different. In particular, note that in plot (b)
E{Ŝ(p)

U (f)} = SY (f) for f = fj = j
64 and j = 0, . . . , 32,

whereas E{Ŝ(p)
Y (·)} and SY (·) in plot (a) differ at some

of these frequencies by more than 2 orders of magnitude
(20 dB).

V. Stationary Power-Law Processes

Suppose now that {Yt} is a stationary power-law
process, which—by definition—has an sdf given by

SY (f) = |f |αS0(f), |f | ≤ 1
2
, (8)

where −1 < α < 0, and S0(·) is strictly positive, contin-
uous and has bounded variation. A specific example of
such a process is a fractional difference process with sdf

ac
vs

ac
vs

0 64

τ

ac
vs

(a)

(b)

(c)

Figure 2. The thick curves in all three plot show the
true acvs {sτ,Y } for lags 0 to 63 for a particular station-
ary process {Yt} (in fact, the same process as was used in
Figure 1). The thin curves show {sτ,U} of Equation (6)
for, from top to bottom, M = 64, 128 and 256—the thin
curve in plot (c) agrees so well with the thick curve that
they are visibly indistinguishable.

given by

SY (f) = (2| sin(πf)|)α, |f | ≤ 1
2
.

This process also has an acvs {sτ,Y } that can be com-
puted recursively by a simple formula. Using these easily
computed sτ,Y ’s, Davies and Harte (1987) found that the
exact frequency domain method can be used to simulate
fractional difference processes. Since a similar simple
formula for the acvs is not readily available for other
stationary power-law processes, it is of some interest to
see if we can modify the approximate frequency domain
method for use here. The main difficulty is that this
method requires that SY (0) be finite, whereas Equa-
tion (8) tells us that SY (0) = ∞. We thus need to find
a suitable replacement for SY (0).



To do so, let us return momentarily to the setup of
the previous section, namely, a process with an sdf that
is continuous over [− 1

2 ,
1
2 ]. An easy exercise tells us that

Ū ≡ 1
M

M−1∑
t=0

Ut =
U0√
M

=

√
SY (0)W0√

M
,

from which we obtain

var{Ū} =
SY (0)
M

≈ var{Ȳ }, where Ȳ =
1
M

M−1∑
t=0

Yt

(Priestley, 1981, p. 320). We can thus regard SY (0) as
an approximation to M · var{Ȳ }. Künsch (1991) shows
that, for a stationary power-law process {Yt},

var{Ȳ } ≈ 4S0(0)Γ(1 + α) sin(−πα/2)
(2πM)1+αα(α− 1)

≡ CM .

This result suggests that we let U0 =
√
MCMW0 for

stationary power-law processes. Limited tests to date
indicate that this substitution is effective. More work
needs to be done, however, to find the best U0 so that
the statistical properties of U0, . . . , UN−1 are as close as
possible to those of Y0, . . . , YN−1.

VI. Nonstationary Power-Law Processes
Suppose now that {Yt} is a nonstationary power-

law process with an “sdf” given by Equation (8) with
α ≤ −1 (because SY (·) integrates to ∞, it is not a proper
sdf). Processes such as these are common models in
the physical sciences—some typical values for α are −1
(“flicker” noise), − 5

3 (certain types of turbulence) and
−2 (“random walk” noise). Yaglom (1958) developed a
rigorous interpretation for the sdf SY (·) in terms of finite
differences of {Yt}. For example, if −3 < α ≤ −1, the
first difference process Xt ≡ Yt − Yt−1 is a stationary
process with sdf

SX(f) = 4 sin2(πf)SY (f), |f | ≤ 1
2
,

an equation which is used to define SY (·) (for α ≤ −3,
we define SY (·) using an appropriate higher order differ-
ence).

Because we define {Yt} for −3 < α ≤ −1 in terms
of its first difference process {Xt}, we can simulate {Xt}
and form cumulative sums to simulate {Yt}. Here we
merely note that we can use SY (·) directly in the ap-
proximate frequency domain method because

Ut − Ut−1 =
−i√
M

M−1∑
j=0

2 sin(πfj)Ujie
−i2πfj(t− 1

2 ),

approximates Yt − Yt−1 properly (again, care must be
taken at f = 0).

VII. Concluding Comments
We have described three methods for simulating a

stationary Gaussian process {Yt} with a specified sdf
SY (·). If the sτ,Y ’s for the process are readily avail-
able, then the best choice is the exact frequency domain
method if the Sj ’s of Equation (2) are in fact nonneg-
ative. If the sτ,Y ’s are not readily available or if one
or more of the Sj ’s are negative, then—with care—the
approximate frequency domain method can be useful.
However, the “M = N” formulation of this method that
is sometimes used should be avoided.
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