
Wavelet Methods for Time Series Analysis

Part II: Wavelet-Based Statistical Analysis of Time Series

• topics to covered:

− wavelet variance (analysis phase of MODWT)

− wavelet-based signal extraction (synthesis phase of DWT)

− wavelet-based decorrelation of time series (analysis phase of
DWT, but synthesis phase plays a role also)

II–1

Wavelet Variance: Overview

• review of decomposition of sample variance using wavelets

• theoretical wavelet variance for stochastic processes

− stationary processes

− nonstationary processes with stationary differences

• sampling theory for Gaussian processes

• real-world examples

• extensions and summary

II–2

Decomposing Sample Variance of Time Series

• let X0, X1, . . . , XN−1 represent time series with N values

• let X denote sample mean of Xt’s: X ≡ 1
N

∑N−1
t=0 Xt

• let σ̂2
X denote sample variance of Xt’s:

σ̂2
X ≡ 1

N

N−1∑

t=0

(
Xt −X

)2

• idea is to decompose (analyze, break up) σ̂2
X into pieces that

quantify how one time series might differ from another

• wavelet variance does analysis based upon differences between
(possibly weighted) adjacent averages over scales

II–3

Empirical Wavelet Variance

• define empirical wavelet variance for scale τj ≡ 2j−1 as

ν̃2
X(τj) ≡

1

N

N−1∑

t=0

W̃ 2
j,t, where W̃j,t ≡

Lj−1∑

l=0

h̃j,lXt−l mod N

• if N = 2J , obtain analysis (decomposition) of sample variance:

σ̂2
X =

1

N

N−1∑

t=0

(
Xt −X

)2
=

J∑

j=1

ν̃2
X(τj)

(if N not a power of 2, can analyze variance to any level J0,
but need additional component involving scaling coefficients)

• interpretation: ν̃2
X(τj) is portion of σ̂2

X due to changes in av-
erages over scale τj; i.e., ‘scale by scale’ analysis of variance

WMTSA: 298 II–4



Example of Empirical Wavelet Variance

• wavelet variances for time series Xt and Yt of length N = 16,
each with zero sample mean and same sample variance
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Theoretical Wavelet Variance: I

• now assume Xt is a real-valued random variable (RV)

• let {Xt, t ∈ Z} denote a stochastic process, i.e., collection of
RVs indexed by ‘time’ t (here Z denotes the set of all integers)

• apply jth level equivalent MODWT filter {h̃j,l} to {Xt} to
create a new stochastic process:

Wj,t ≡
Lj−1∑

l=0

h̃j,lXt−l, t ∈ Z,

which should be contrasted with

W̃j,t ≡
Lj−1∑

l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

WMTSA: 295–296 II–6

Theoretical Wavelet Variance: II

• if Y is any RV, let E{Y } denote its expectation

• let var {Y } denote its variance: var {Y } ≡ E{(Y − E{Y })2}
• definition of time dependent wavelet variance:

ν2
X,t(τj) ≡ var {Wj,t},

with conditions on Xt so that var {Wj,t} exists and is finite

• ν2
X,t(τj) depends on τj and t

• will focus on time independent wavelet variance

ν2
X(τj) ≡ var {Wj,t}

(can adapt theory to handle time varying situation)

• ν2
X(τj) well-defined for stationary processes and certain related

processes, so let’s review concept of stationarity

WMTSA: 295–296 II–7

Definition of a Stationary Process

• if U and V are two RVs, denote their covariance by

cov {U, V } = E{(U − E{U})(V − E{V })}

• stochastic process Xt called stationary if

− E{Xt} = µX for all t, i.e., constant independent of t

− cov{Xt,Xt+τ} = sX,τ , i.e., depends on lag τ , but not t

• sX,τ , τ ∈ Z, is autocovariance sequence (ACVS)

• sX,0 = cov{Xt,Xt} = var{Xt}; i.e., variance same for all t

WMTSA: 266 II–8



Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes var {Xt}:
∞∑

j=1

ν2
X(τj) = var {Xt},

which is similar to
J∑

j=1

ν̃2
X(τj) = σ̂2

X

• ν2
X(τj) is thus contribution to var {Xt} due to scale τj

• note: ν2
X(τj) and X2

t have same units (can be important for
interpretability)

WMTSA: 296–297 II–9

White Noise Process

• simplest example of a stationary process is ‘white noise’

• process Xt said to be white noise if

− it has a constant mean E{Xt} = µX

− it has a constant variance var {Xt} = σ2
X

− cov {Xt,Xt+τ} = 0 for all t and nonzero τ ; i.e., distinct RVs
in the process are uncorrelated

• ACVS for white noise takes a very simple form:

sX,τ = cov {Xt,Xt+τ} =

{
σ2
X, τ = 0;

0, otherwise.

WMTSA: 268 II–10

Wavelet Variance for White Noise Process: I

• for a white noise process, can show that

ν2
X(τj) =

var {Xt}
2j ∝ τ−1

j since τj = 2j−1

• note that
∞∑

j=1

ν2
X(τj) = var {Xt}

(
1
2 + 1

4 + 1
8 + · · ·

)
= var {Xt},

as required

• note also that

log (ν2
X(τj)) ∝ − log (τj),

so plot of log (ν2
X(τj)) vs. log (τj) is linear with a slope of −1

WMTSA: 296–297, 337 II–11

Wavelet Variance for White Noise Process: II
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• ν2
X(τj) versus τj for j = 1, . . . , 8 (left-hand plot), along with

sample of length N = 256 of Gaussian white noise

• largest contribution to var {Xt} is at smallest scale τ1

• note: later on, we will discuss fractionally differenced (FD)
processes that are characterized by a parameter δ; when δ = 0,
an FD process is the same as a white noise process

WMTSA: 296–297, 337 II–12



Generalization to Certain Nonstationary Processes

• if wavelet filter is properly chosen, ν2
X(τj) well-defined for cer-

tain processes with stationary backward differences (increments);
these are also known as intrinsically stationary processes

• first order backward difference of Xt is process defined by

X
(1)
t = Xt −Xt−1

• second order backward difference of Xt is process defined by

X
(2)
t = X

(1)
t −X

(1)
t−1 = Xt − 2Xt−1 + Xt−2

•Xt said to have dth order stationary backward differences if

Yt ≡
d∑

k=0

(
d

k

)
(−1)kXt−k

forms a stationary process (d is a nonnegative integer)

WMTSA: 287–289 II–13

Examples of Processes with Stationary Increments

  

 

  

 

  

 

Xt X(1)
t X(2)

t

(a)

(b)

(c)

0

0

0

0 256 0 256 0 256

t t t

• 1st column shows, from top to bottom, realizations from

(a) random walk: Xt =
∑t

u=1 εu, & εt is zero mean white noise

(b) like (a), but now εt has mean of −0.2

(c) random run: Xt =
∑t

u=1 Yu, where Yt is a random walk

• 2nd & 3rd columns show 1st & 2nd differences X
(1)
t and X

(2)
t

WMTSA: 287–289 II–14

Wavelet Variance for Processes with
Stationary Backward Differences: I

• let {Xt} be nonstationary with dth order stationary differences

• if we use a Daubechies wavelet filter of width L satisfying L ≥
2d, then ν2

X(τj) is well-defined and finite for all τj, but now
∞∑

j=1

ν2
X(τj) = ∞

• works because there is a backward difference operator of order
d = L/2 embedded within {h̃j,l}, so this filter reduces Xt to

d∑

k=0

(
d

k

)
(−1)kXt−k = Yt

and then creates localized weighted averages of Yt’s

WMTSA: 305 II–15

Wavelet Variance for Random Walk Process: I

• random walk process Xt =
∑t

u=1 εu has first order (d = 1)
stationary differences since Xt −Xt−1 = εt (i.e., white noise)

• L ≥ 2d holds for all wavelets when d = 1; for Haar (L = 2),

ν2
X(τj) =

var {εt}
6

(
τj +

1

2τj

)
≈ var {εt}

6
τj,

with the approximation becoming better as τj increases

• note that ν2
X(τj) increases as τj increases

• log (ν2
X(τj)) ∝ log (τj) approximately, so plot of log (ν2

X(τj))
vs. log (τj) is approximately linear with a slope of +1

• as required, also have
∞∑

j=1

ν2
X(τj) =

var {εt}
6

(
1 + 1

2 + 2 + 1
4 + 4 + 1

8 + · · ·
)

= ∞

WMTSA: 337 II–16



Wavelet Variance for Random Walk Process: II
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• ν2
X(τj) versus τj for j = 1, . . . , 8 (left-hand plot), along with

sample of length N = 256 of a Gaussian random walk process

• smallest contribution to var {Xt} is at smallest scale τ1

• note: a fractionally differenced process with parameter δ = 1
is the same as a random walk process

WMTSA: 337 II–17

Fractionally Differenced (FD) Processes: I

• can create a continuum of processes that ‘interpolate’ between
white noise and random walks and ‘extrapolate’ beyond them
using notion of ‘fractional differencing’ (Granger and Joyeux,
1980; Hosking, 1981)

• FD(δ) process is determined by 2 parameters, namely, δ and
σ2
ε , where −∞ < δ < ∞ and σ2

ε > 0 (σ2
ε is less important

than δ)

• if δ < 1/2, FD process {Xt} is stationary, and, in particular,

− reduces to white noise if δ = 0

− has ‘long memory’ or ‘long range dependence’ if δ > 0

− is ‘antipersistent’ if δ < 0 (i.e., cov {Xt,Xt+1} < 0)

WMTSA: 281–285 II–18

Fractionally Differenced (FD) Processes: II

• if δ ≥ 1/2, FD process {Xt} is nonstationary with dth order
stationary backward differences {Yt}
− here d = (δ + 1/2), where (x) is integer part of x

− {Yt} is stationary FD(δ − d) process

• if δ = 1, FD process is the same as a random walk process

• except possibly for two or three smallest scales, have

ν2
X(τj) ≈ Cτ2δ−1

j

• thus log (ν2
X(τj)) ≈ log (C)+(2δ−1) log (τj), so a log/log plot

of ν2
X(τj) vs. τj looks approximately linear with slope 2δ − 1

for τj large enough

WMTSA: 287–288, 297 II–19

LA(8) Wavelet Variance for 2 FD Processes
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• see overhead 12 for δ = 0 (white noise), which has slope = −1

• δ = 1
4 has slope −1

2

• δ = 1
2 has slope 0 (related to so-called ‘pink noise’)

WMTSA: 287–288, 297 II–20



LA(8) Wavelet Variance for 2 More FD Processes
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• δ = 5
6 has slope 2

3 (related to Kolmogorov turbulence)

• δ = 1 has slope 1 (random walk)

• nonnegative slopes indicate nonstationarity, while negative slopes
indicate stationarity

WMTSA: 287–288, 297 II–21

Wavelet Variance for Processes with
Stationary Backward Differences: II

• summary: ν2
X(τj) well-defined for process {Xt} that is

− stationary

− nonstationary with dth order stationary increments, but width
of wavelet filter must satisfy L ≥ 2d

• if {Xt} is stationary, then
∞∑

j=1

ν2
X(τj) = var {Xt} < ∞

(recall that each RV in a stationary process must have the same
finite variance)

WMTSA: 299–301, 305 II–22

Wavelet Variance for Processes with
Stationary Backward Differences: III

• if {Xt} is nonstationary, then
∞∑

j=1

ν2
X(τj) = ∞

• with a suitable construction, we can take variance of nonsta-
tionary process with dth order stationary increments to be ∞

• using this construction, we have
∞∑

j=1

ν2
X(τj) = var {Xt}

for both the stationary and nonstationary cases

WMTSA: 299–301, 305 II–23

Background on Gaussian Random Variables

• N (µ,σ2) denotes a Gaussian (normal) RV with mean µ and
variance σ2

• will write

X
d
= N (µ,σ2)

to mean ‘RV X has same distribution as Gaussian RV’

• RV N (0, 1) often written as Z (called standard Gaussian or
standard normal)

• let Φ(·) be Gaussian cumulative distribution function

Φ(z) ≡ P[Z ≤ z] =

∫ z

−∞

1√
(2π)

e−x2/2 dx

• inverse Φ−1(·) of Φ(·) is such that P[Z ≤ Φ−1(p)] = p

• Φ−1(p) called p× 100% percentage point

WMTSA: 256–257 II–24



Background on Chi-Square Random Variables

•X said to be a chi-square RV with η degrees of freedom if its
probability density function (PDF) is given by

fX(x; η) =
1

2η/2Γ(η/2)
x(η/2)−1e−x/2, x ≥ 0, η > 0

• χ2
η denotes RV with above PDF

• if Z1, Z2, . . . , Zη are independent standard Gaussian RVs, then

Z2
1 + Z2

2 + · · · + Z2
η

d
= χ2

η

• two important facts: E{χ2
η} = η and var {χ2

η} = 2η

• let Qη(p) denote the pth percentage point for the RV χ2
η:

P[χ2
η ≤ Qη(p)] = p

WMTSA: 263–264 II–25

Expected Value of Wavelet Coefficients

• in preparation for considering problem of estimating ν2
X(τj)

given an observed time series, need to consider E{Wj,t}
• if {Xt} is nonstationary but has dth order stationary incre-

ments, let {Yt} be stationary process obtained by differencing
{Xt} d times; if {Xt} is stationary (d = 0 case), let Yt = Xt

• with µY ≡ E{Yt}, have

− E{Wj,t} = 0 if either (i) L > 2d or (ii) L = 2d and µY = 0

− E{Wj,t} -= 0 if µY -= 0 and L = 2d

• thus have E{Wj,t} = 0 if L is picked large enough (L > 2d is
sufficient, but might not be necessary)

• knowing E{Wj,t} = 0 eases job of estimating ν2
X(τj) consid-

erably

WMTSA: 304–305 II–26

Unbiased Estimator of Wavelet Variance: I

• given a realization of X0, X1, . . . , XN−1 from a process with
dth order stationary differences, want to estimate ν2

X(τj)

• for wavelet filter such that L ≥ 2d and E{Wj,t} = 0, have

ν2
X(τj) = var {Wj,t} = E{W 2

j,t}
• can base estimator on squares of

W̃j,t ≡
Lj−1∑

l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

• recall that

Wj,t ≡
Lj−1∑

l=0

h̃j,lXt−l, t ∈ Z

WMTSA: 306 II–27

Unbiased Estimator of Wavelet Variance: II

• comparing

W̃j,t =

Lj−1∑

l=0

h̃j,lXt−l mod N with Wj,t ≡
Lj−1∑

l=0

h̃j,lXt−l

says that W̃j,t = Wj,t if ‘mod N ’ not needed; this happens
when Lj − 1 ≤ t < N (recall that Lj = (2j − 1)(L− 1) + 1)

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1∑

t=Lj−1

W̃ 2
j,t =

1

Mj

N−1∑

t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1

WMTSA: 306 II–28



Statistical Properties of ν̂2
X(τj)

• assume that {Wj,t} is Gaussian stationary process with mean
zero and ACVS {sj,τ}

• suppose {sj,τ} is such that

Aj ≡
∞∑

τ=−∞
s2
j,τ < ∞

(if Aj = ∞, can make it finite usually by just increasing L)

• can show that ν̂2
X(τj) is asymptotically Gaussian with mean

ν2
X(τj) and large sample variance 2Aj/Mj; i.e.,

ν̂2
X(τj)− ν2

X(τj)

(2Aj/Mj)1/2
=

M
1/2
j (ν̂2

X(τj)− ν2
X(τj))

(2Aj)1/2

d
= N (0, 1)

approximately for large Mj ≡ N − Lj + 1
WMTSA: 307 II–29

Estimation of Aj

• in practical applications, need to estimate Aj =
∑

τ s2
j,τ

• can argue that, for large Mj, the estimator

Âj ≡

(
ŝ
(p)
j,0

)2

2
+

Mj−1∑

τ=1

(
ŝ
(p)
j,τ

)2
,

is approximately unbiased, where

ŝ
(p)
j,τ ≡

1

Mj

N−1−|τ |∑

t=Lj−1

W̃j,tW̃j,t+|τ |, 0 ≤ |τ | ≤ Mj − 1

• Monte Carlo results: Âj reasonably good for Mj ≥ 128

WMTSA: 312 II–30

Confidence Intervals for ν2
X(τj): I

• based upon large sample theory, can form a 100(1− 2p)% con-
fidence interval (CI) for ν2

X(τj):
[
ν̂2
X(τj)− Φ−1(1− p)

√
2Aj√
Mj

, ν̂2
X(τj) + Φ−1(1− p)

√
2Aj√
Mj

]
;

i.e., random interval traps unknown ν2
X(τj) with probability

1− 2p

• if Aj replaced by Âj, get approximate 100(1− 2p)% CI

• critique: lower limit of CI can very well be negative even though
ν2
X(τj) ≥ 0 always

• can avoid this problem by using a χ2 approximation

WMTSA: 311 II–31

Confidence Intervals for ν2
X(τj): II

• χ2
η useful for approximating distribution of sum of squared

Gaussian RVs, which is what we are dealing with here:

ν̂2
X(τj) =

1

Mj

N−1∑

t=Lj−1

W
2
j,t

• idea is to assume ν̂2
X(τj)

d
= aχ2

η, where a and η are constants
to be set via moment matching

• because E{χ2
η} = η and var {χ2

η} = 2η, we have E{aχ2
η} = aη

and var {aχ2
η} = 2a2η

• can equate E{ν̂2
X(τj)} & var {ν̂2

X(τj)} to aη & 2a2η to deter-
mine a & η

WMTSA: 313 II–32



Confidence Intervals for ν2
X(τj): III

• obtain

η =
2
(
E{ν̂2

X(τj)}
)2

var {ν̂2
X(τj)}

=
2ν4

X(τj)

var {ν̂2
X(τj)}

and a =
ν2
X(τj)

η

• after η has been determined, can obtain a CI for ν2
X(τj): with

probability 1− 2p, the random interval
[

ην̂2
X(τj)

Qη(1− p)
,
ην̂2

X(τj)

Qη(p)

]

traps the true unknown ν2
X(τj)

• lower limit is now nonnegative

• as N →∞, above CI and Gaussian-based CI converge

WMTSA: 313 II–33

Three Ways to Set η

1. use large sample theory with appropriate estimates:

η =
2ν4

X(τj)

var {ν̂2
X(τj)}

≈
2ν4

X(τj)

2Aj/Mj
suggests η̂1 =

Mjν̂
4
X(τj)

Âj

2. make an assumption about the effect of wavelet filter on {Xt}
to obtain simple approximation

η3 = max{Mj/2j, 1}
(this effective – but conservative – approach is valuable if there
are insufficient data to reliably estimate Aj)

3. third way requires assuming shape of spectral density function
associated with {Xt} (questionable assumption, but common
practice in, e.g., atomic clock literature)

WMTSA: 313–315 II–34

Atomic Clock Deviates: I
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WMTSA: 317–318 II–35

Atomic Clock Deviates: II

• top plot: errors {Xt} in time kept by atomic clock 571 (mea-
sured in microseconds: 1,000,000 microseconds = 1 second)

• middle: 1st backward differences {X(1)
t } in nanoseconds

(1000 nanoseconds = 1 microsecond)

• bottom: 2nd backward differences {X(2)
t }, also in nanoseconds

• if {Xt} nonstationary with dth order stationary increments,
need L ≥ 2d, but might need L > 2d to get E{Wj,t} = 0

• might regard {X(1)
t } as realization of stationary process, but, if

so, with a mean value far from 0; {X(2)
t } resembles realization

of stationary process, but mean value still might not be 0 if

we believe there is a linear trend in {X(1)
t }; thus might need

L ≥ 6, but could get away with L ≥ 4
WMTSA: 317–318 II–36



Atomic Clock Deviates: III
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Atomic Clock Deviates: IV

• square roots of wavelet variance estimates for atomic clock time
errors {Xt} based upon unbiased MODWT estimator with

− Haar wavelet (x’s in left-hand plot, with linear fit)

− D(4) wavelet (circles in left- and right-hand plots)

− D(6) wavelet (pluses in left-hand plot).

• Haar wavelet inappropriate

− need {X(1)
t } to be a realization of a stationary process with

mean 0 (stationarity might be OK, but mean 0 is way off)

− linear appearance can be explained in terms of nonzero mean

• 95% confidence intervals in the right-hand plot are the square
roots of intervals computed using the chi-square approximation
with η given by η̂1 for j = 1, . . . , 6 and by η3 for j = 7 & 8

WMTSA: 319 II–38

Annual Minima of Nile River
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• left-hand plot: annual minima of Nile River

• right: Haar ν̂2
X(τj) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon χ2
η3

approximation

WMTSA: 326–327 II–39

Wavelet Variance Analysis of Time Series
with Time-Varying Statistical Properties

• each wavelet coefficient W̃j,t formed using portion of Xt

• suppose Xt associated with actual time t0 + t ∆t

∗ t0 is actual time of first observation X0

∗ ∆t is spacing between adjacent observations

• suppose h̃j,l is least asymmetric Daubechies wavelet

• can associate W̃j,t with an interval of width 2τj ∆t centered at

t0 + (2j(t + 1)− 1− |ν(H)
j | mod N) ∆t,

where, e.g., |ν(H)
j | = [7(2j − 1) + 1]/2 for LA(8) wavelet

• can thus form ‘localized’ wavelet variance analysis (implicitly
assumes stationarity or stationary increments locally)

WMTSA: 114–115 II–40



Subtidal Sea Level Fluctuations: I
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• subtidal sea level fluctuations X for Crescent City, CA, col-
lected by National Ocean Service with permanent tidal gauge

•N = 8746 values from Jan 1980 to Dec 1991 (almost 12 years)

• one value every 12 hours, so ∆t = 1/2 day

• ‘subtidal’ is what remains after diurnal & semidiurnal tides are
removed by low-pass filter (filter seriously distorts frequency
band corresponding to first physical scale τ1 ∆t = 1/2 day)

WMTSA: 185–186 II–41

Subtidal Sea Level Fluctuations: II
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• level J0 = 7 LA(8) MODWT multiresolution analysis

WMTSA: 186 II–42

Subtidal Sea Level Fluctuations: III
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• estimated time-dependent LA(8) wavelet variances for physical
scale τ2 ∆t = 1 day based upon averages over monthly blocks
(30.5 days, i.e., 61 data points)

• plot also shows a representative 95% confidence interval based
upon a hypothetical wavelet variance estimate of 1/2 and a
chi-square distribution with ν = 15.25

WMTSA: 324–326 II–43

Subtidal Sea Level Fluctuations: IV
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• estimated LA(8) wavelet variances for physical scales τj ∆t =
2j−2 days, j = 2, . . . , 7, grouped by calendar month
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Some Extensions

• wavelet cross-covariance and cross-correlation (Whitcher, Gut-
torp and Percival, 2000; Serroukh and Walden, 2000a, 2000b)

• asymptotic theory for non-Gaussian processes satisfying a cer-
tain ‘mixing’ condition (Serroukh, Walden and Percival, 2000)

• biased estimators of wavelet variance (Aldrich, 2005)

• unbiased estimator of wavelet variance for ‘gappy’ time series
(Mondal and Percival, 2010a)

• robust estimation (Mondal and Percival, 2010b)

• wavelet variance for random fields (Mondal and Percival, 2010c)

• wavelet-based characteristic scales (Keim and Percival, 2010)

II–45

Summary

• wavelet variance gives scale-based analysis of variance

• presented statistical theory for Gaussian processes with station-
ary increments

• in addition to the applications we have considered, the wavelet
variance has been used to analyze

− genome sequences

− changes in variance of soil properties

− canopy gaps in forests

− accumulation of snow fields in polar regions

− boundary layer atmospheric turbulence

− regular and semiregular variable stars

II–46

Wavelet-Based Signal Extraction: Overview

• outline key ideas behind wavelet-based approach

• description of four basic models for signal estimation

• discussion of why wavelets can help estimate certain signals

• simple thresholding & shrinkage schemes for signal estimation

• wavelet-based thresholding and shrinkage

• discuss some extensions to basic approach

II–47

Wavelet-Based Signal Estimation: I

• DWT analysis of X yields W = WX

• DWT synthesis X = WTW yields multiresolution analysis by
splitting WTW into pieces associated with different scales

• DWT synthesis can also estimate ‘signal’ hidden in X if we can
modify W to get rid of noise in the wavelet domain

• if W′ is a ‘noise reduced’ version of W, can form signal estimate
via WTW′

WMTSA: 393 II–48



Wavelet-Based Signal Estimation: II

• key ideas behind simple wavelet-based signal estimation

− certain signals can be efficiently described by the DWT using

∗ all of the scaling coefficients
∗ a small number of ‘large’ wavelet coefficients

− noise is manifested in a large number of ‘small’ wavelet co-
efficients

− can either ‘threshold’ or ‘shrink’ wavelet coefficients to elim-
inate noise in the wavelet domain

• key ideas led to wavelet thresholding and shrinkage proposed
by Donoho, Johnstone and coworkers in 1990s

WMTSA: 393–394 II–49

Models for Signal Estimation: I

• will consider two types of signals:

1. D, an N dimensional deterministic signal

2. C, an N dimensional stochastic signal; i.e., a vector of ran-
dom variables (RVs) with covariance matrix ΣC

• will consider two types of noise:

1. ε, an N dimensional vector of independent and identically
distributed (IID) RVs with mean 0 and covariance matrix
Σε = σ2

εIN

2. η, an N dimensional vector of non-IID RVs with mean 0 and
covariance matrix Ση
∗ one form: RVs independent, but have different variances
∗ another form of non-IID: RVs are correlated

WMTSA: 393–394 II–50

Models for Signal Estimation: II

• leads to four basic ‘signal + noise’ models for X

1. X = D + ε

2. X = D + η

3. X = C + ε

4. X = C + η

• in the latter two cases, the stochastic signal C is assumed to
be independent of the associated noise

WMTSA: 393–394 II–51

Signal Representation via Wavelets: I

• consider X = D + ε first, and concentrate on signal D

• signal estimation problem is simplified if we can assume that
the important part of D is in its large values

• assumption is not usually viable in the original (i.e., time do-
main) representation D, but might be true in another domain

• an orthonormal transform O might be useful because

− d = OD is equivalent to D (since D = OTd)

− we might be able to find O such that the signal is isolated
in M 1 N large transform coefficients

• Q: how can we judge whether a particular O might be useful
for representing D?

WMTSA: 394 II–52



Signal Representation via Wavelets: II

• let dj be the jth transform coefficient in d = OD

• let d(0), d(1), . . . , d(N−1) be the dj’s reordered by magnitude:

|d(0)| ≥ |d(1)| ≥ · · · ≥ |d(N−1)|

• example: if d = [−3, 1, 4,−7, 2,−1]T , then
d(0) = d3 = −7, d(1) = d2 = 4, d(2) = d0 = −3 etc.

• define a normalized partial energy sequence (NPES):

CM−1 ≡
∑M−1

j=0 |d(j)|2
∑N−1

j=0 |d(j)|2
=

energy in largest M terms

total energy in signal

• let IM be N ×N diagonal matrix whose jth diagonal term is
1 if |dj| is one of the M largest magnitudes and is 0 otherwise

WMTSA: 394–395 II–53

Signal Representation via Wavelets: III

• form D̂M ≡ OTIMd, which is an approximation to D

• when d = [−3, 1, 4,−7, 2,−1]T and M = 3, we have

I3 =





1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




and thus D̂M = OT





−3
0
4
−7
0
0





• one interpretation for NPES:

CM−1 = 1− ‖D− D̂M‖2

‖D‖2 = 1− relative approximation error

WMTSA: 394–395 II–54

Signal Representation via Wavelets: IV

D1 D2 D3
1

0

−1
0 64 128 0 64 128 0 64 128

t t t

• consider three signals plotted above

•D1 is a sinusoid, which can be represented succinctly by the
discrete Fourier transform (DFT)

•D2 is a bump (only a few nonzero values in the time domain)

•D3 is a linear combination of D1 and D2

WMTSA: 395–396 II–55

Signal Representation via Wavelets: V

• consider three different orthonormal transforms

− identity transform I (time)

− the orthonormal DFT F (frequency), where F has (k, t)th
element exp(−i2πtk/N)/

√
N for 0 ≤ k, t ≤ N − 1

− the LA(8) DWT W (wavelet)

• # of terms M needed to achieve relative error < 1%:

D1 D2 D3
DFT 2 29 28
identity 105 9 75
LA(8) wavelet 22 14 21

WMTSA: 395–396 II–56



Signal Representation via Wavelets: VI

D1 D2 D3
1

0

−1
1.0

0.9
0 6464 128 0 64 128 0 64 128

M M M

• use NPESs to see how well these three signals are represented
in the time, frequency (DFT) and wavelet (LA(8)) domains

• time (solid curves), frequency (dotted) and wavelet (dashed)

WMTSA: 395–396 II–57

Signal Representation via Wavelets: IX
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• example: DFT D̂M (left-hand column) & J0 = 6 LA(8) DWT
D̂M (right) for NMR series X (A. Maudsley, UCSF)

WMTSA: 431–432 II–58

Signal Estimation via Thresholding: I

• thresholding schemes involve

1. computing O ≡ OX

2. defining O(t) as vector with lth element

O
(t)
l =

{
0, if |Ol| ≤ δ;

some nonzero value, otherwise,

where nonzero values are yet to be defined

3. estimating D via D̂(t) ≡ OTO(t)

• simplest scheme is ‘hard thresholding’ (‘kill/keep’ strategy):

O
(ht)
l =

{
0, if |Ol| ≤ δ;

Ol, otherwise.

WMTSA: 399 II–59

Hard Thresholding Function

• plot shows mapping from Ol to O
(ht)
l

3δ

2δ

δ

0

−δ

−2δ

−3δ
−3δ −2δ −δ 0 δ 2δ 3δ

O(ht)
l

Ol
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Signal Estimation via Thresholding: II

• hard thresholding is strategy that arises from solution to simple
optimization problem, namely, find D̂M such that

γm ≡ ‖X− D̂m‖2 + mδ2

is minimized over all possible D̂m = OTImO, m = 0, . . . , N

• δ is a fixed parameter that is set a priori (we assume δ > 0)

• ‖X− D̂m‖2 is a measure of ‘fidelity’

− rationale for this term: D̂m shouldn’t stray too far from X
(particularly if signal-to-noise ratio is high)

− fidelity increases (the measure decreases) as m increases

− in minimizing γm, consideration of this term alone suggests
that m should be large

WMTSA: 398 II–61

Signal Estimation via Thresholding: III

•mδ2 is a penalty for too many terms

− rationale: heuristic says d = OD consists of just a few large
coefficients

− penalty increases as m increases

− in minimizing γm, consideration of this term alone suggests
that m should be small

• optimization problem: balance off fidelity & parsimony

• can show that γm = ‖X− D̂m‖2 + mδ2 is minimized when m
is set such that Im picks out all coefficients satisfying O2

j > δ2

WMTSA: 398 II–62

Signal Estimation via Thresholding: IV

• alternative scheme is ‘soft thresholding:’

O
(st)
l = sign {Ol} (|Ol|− δ)+ ,

where

sign {Ol} ≡






+1, if Ol > 0;

0, if Ol = 0;

−1, if Ol < 0.

and (x)+ ≡
{

x, if x ≥ 0;

0, if x < 0.

• one rationale for soft thresholding: fits into Stein’s class of es-
timators, for which unbiased estimation of risk is possible

WMTSA: 399–400 II–63

Soft Thresholding Function

• here is the mapping from Ol to O
(st)
l

3δ

2δ

δ

0

−δ
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l
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Signal Estimation via Thresholding: V

• third scheme is ‘mid thresholding:’

O
(mt)
l = sign {Ol} (|Ol|− δ)++ ,

where

(|Ol|− δ)++ ≡
{

2(|Ol|− δ)+, if |Ol| < 2δ;

|Ol|, otherwise

• provides compromise between hard and soft thresholding

WMTSA: 399–400 II–65

Mid Thresholding Function

• here is the mapping from Ol to O
(mt)
l

3δ

2δ

δ

0

−δ

−2δ

−3δ
−3δ −2δ −δ 0 δ 2δ 3δ

O(mt)
l

Ol

WMTSA: 399–400 II–66

Signal Estimation via Thresholding: VI

• example of mid thresholding with δ = 1
3

0

−3

2
1
0

−1
−2

2
1
0

−1
−2

3

0

−3
0 64

Xt

Ol

O(mt)
l

D̂(mt)
t

t or l
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Universal Threshold

• Q: how do we go about setting δ?

• specialize to IID Gaussian noise ε with covariance σ2
εIN

• can argue e ≡ Oε is also IID Gaussian with covariance σ2
εIN

• Donoho & Johnstone (1995) proposed δ(u) ≡
√

[2σ2
ε log(N)]

(‘log’ here is ‘log base e’)

• rationale for δ(u): because of Gaussianity, can argue that

P
[
max

l
{|el|} > δ(u)] ≤ 1√

[4π log (N)]
→ 0 as N →∞

and hence P
[
maxl{|el}| ≤ δ(u)

]
→ 1 as N →∞, so no noise

will exceed threshold in the limit

WMTSA: 400–402 II–68



Wavelet-Based Thresholding

• assume model of deterministic signal plus IID Gaussian noise
with mean 0 and variance σ2

ε : X = D + ε

• using a DWT matrixW , form W = WX = WD+Wε ≡ d+e

• because ε IID Gaussian, so is e

• Donoho & Johnstone (1994) advocate the following:

− form partial DWT of level J0: W1, . . . ,WJ0
and VJ0

− threshold Wj’s but leave VJ0
alone (i.e., administratively,

all N/2J0 scaling coefficients assumed to be part of d)

− use universal threshold δ(u) =
√

[2σ2
ε log(N)]

− use thresholding rule to form W
(t)
j (hard, etc.)

− estimate D by inverse transforming W
(t)
1 , . . . ,W

(t)
J0

and VJ0

WMTSA: 417–419 II–69

MAD Scale Estimator: I

• procedure assumes σε is know, which is not usually the case

• if unknown, use median absolute deviation (MAD) scale esti-
mator to estimate σε using W1

σ̂(mad) ≡
median {|W1,0|, |W1,1|, . . . , |W1,N2 −1

|}

0.6745
− heuristic: bulk of W1,t’s should be due to noise

− ‘0.6745’ yields estimator such that E{σ̂(mad)} = σε when

W1,t’s are IID Gaussian with mean 0 and variance σ2
ε

− designed to be robust against large W1,t’s due to signal

WMTSA: 420 II–70

MAD Scale Estimator: II

• example: suppose W1 has 7 small ‘noise’ coefficients & 2 large
‘signal’ coefficients (say, a & b, with 2 1 |a| < |b|):

W1 = [1.23,−1.72,−0.80,−0.01, a, 0.30, 0.67, b,−1.33]T

• ordering these by their magnitudes yields

0.01, 0.30, 0.67, 0.80, 1.23, 1.33, 1.72, |a|, |b|

• median of these absolute deviations is 1.23, so

σ̂(mad) = 1.23/0.6745
.
= 1.82

• σ̂(mad) not influenced adversely by a and b; i.e., scale estimate
depends largely on the many small coefficients due to noise

WMTSA: 420 II–71

Examples of DWT-Based Thresholding: I
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Examples of DWT-Based Thresholding: II
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• signal estimate using J0 = 6 partial D(4) DWT with hard
thresholding and universal threshold level estimated by δ̂(u) =√

[2σ̂2
(mad) log (N)]

.
= 6.49

WMTSA: 418 II–73

Examples of DWT-Based Thresholding: III
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• same as before, but now using LA(8) DWT with δ̂(u) .
= 6.13
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Examples of DWT-Based Thresholding: IV
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• signal estimate using J0 = 6 partial LA(8) DWT, but now with
soft thresholding

WMTSA: 418 II–75

Examples of DWT-Based Thresholding: V
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• signal estimate using J0 = 6 partial LA(8) DWT, but now with
mid thresholding
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MODWT-Based Thresholding

• can base thresholding procedure on MODWT rather than DWT,
yielding signal estimators D̃(ht), D̃(st) and D̃(mt)

• because MODWT filters are normalized differently, universal
threshold must be adjusted for each level:

δ̃
(u)
j ≡

√
[2σ̃2

(mad) log (N)/2j],

where now MAD scale estimator is based on unit scale MODWT
wavelet coefficients

• results are identical to what ‘cycle spinning’ would yield

WMTSA: 429–430 II–77

Examples of MODWT-Based Thresholding: I
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• signal estimate using J0 = 6 LA(8) MODWT with hard thresh-
olding
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Examples of MODWT-Based Thresholding: II
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• same as before, but now with soft thresholding
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Examples of MODWT-Based Thresholding: III
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• same as before, but now with mid thresholding

WMTSA: 429–430 II–80



Signal Estimation via Shrinkage: I

• so far, we have only considered signal estimation via threshold-
ing rules, which will map some Ol to zeros

• will now consider shrinkage rules, which differ from thresholding
only in that nonzero coefficients are mapped to nonzero values
rather than exactly zero (but values can be very close to zero!)

• several ways in which shrinkage rules arise – will consider a
conditional mean approach (identical to a Bayesian approach)

II–81

Background on Conditional PDFs: I

• let X and Y be RVs with marginal probability density functions
(PDFs) fX(·) and fY (·)

• let fX,Y (x, y) be their joint PDF at the point (x, y)

• conditional PDF of Y given X = x is defined as

fY |X=x(y) =
fX,Y (x, y)

fX(x)

• fY |X=x(·) is a PDF, so its mean value is

E{Y |X = x} =

∫ ∞

−∞
yfY |X=x(y) dy;

the above is called the conditional mean of Y , given X

WMTSA: 258–260 II–82

Background on Conditional PDFs: II

• suppose RVs X and Y are related, but we can only observe X

• want to approximate unobservable Y based on function of X

• example: X represents a stochastic signal Y buried in noise

• suppose we want our approximation to be the function of X,
say U2(X), such that the mean square difference between Y
and U2(X) is as small as possible; i.e., we want

E{(Y − U2(X))2}
to be as small as possible

• solution is to use U2(X) = E{Y |X}; i.e., the conditional mean
of Y given X is our best guess at Y in the sense of minimizing
the mean square error (related to fact that E{(Y − a)2} is
smallest when a = E{Y })

WMTSA: 260 II–83

Conditional Mean Approach: I

• assume model of stochastic signal plus non-IID noise:
X = C + η so that O = OX = OC +Oη ≡ R + n

• component-wise, have Ol = Rl + nl

• because C and η are independent, R and n must be also

• suppose we approximate Rl via R̂l ≡ U2(Ol), where U2(Ol) is
selected to minimize E{(Rl − U2(Ol))

2}
• solution is to set U2(Ol) equal to E{Rl|Ol}, so let’s work out

what form this conditional mean takes

• to get E{Rl|Ol}, need the PDF of Rl given Ol, which is

fRl|Ol=ol
(rl) =

fRl,Ol
(rl, ol)

fOl
(ol)

=
fRl

(rl)fnl(ol − rl)∫∞
−∞ fRl

(rl)fnl(ol − rl) drl

WMTSA: 408–409 II–84



Conditional Mean Approach: II

• mean value of fRl|Ol=ol
(·) yields estimator R̂l = E{Rl|Ol}:

E{Rl|Ol = ol} =

∫ ∞

−∞
rlfRl|Ol=ol

(rl) drl

=

∫∞
−∞ rlfRl

(rl)fnl(ol − rl)drl∫∞
−∞ fRl

(rl)fnl(ol − rl) drl

• to make further progress, we need a model for the wavelet-
domain representation Rl of the signal

• heuristic that signal in the wavelet domain has a few large values
and lots of small values suggests a Gaussian mixture model

WMTSA: 410 II–85

Conditional Mean Approach: III

• let Il be an RV such that P [Il = 1] = pl & P [Il = 0] = 1−pl

• under Gaussian mixture model, Rl has same distribution as

IlN (0, γ2
l σ

2
Gl

) + (1− Il)N (0,σ2
Gl

)

where N (0,σ2) is a Gaussian RV with mean 0 and variance σ2

− 2nd component models small # of large signal coefficients

− 1st component models large # of small coefficients (γ2
l 1 1)

• example: PDFs for case σ2
Gl

= 10, γ2
l σ

2
Gl

= 1 and pl = 0.75

0.4
0.3

0.2

0.1
0.0

−10 −5 0 5 10−10 −5 0 5 10
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Conditional Mean Approach: VI

• let’s simplify to a ‘sparse’ signal model by setting γl = 0; i.e.,
large # of small coefficients are all zero

• distribution for Rl same as (1− Il)N (0,σ2
Gl

)

• to complete model, let nl obey a Gaussian distribution with
mean 0 and variance σ2

nl

• conditional mean estimator becomes E{Rl|Ol = ol} = bl
1+cl

ol,
where

cl =
pl
√

(σ2
Gl

+ σ2
nl

)

(1− pl)σnl

e
−o2

l bl/(2σ2
nl

)

WMTSA: 411 II–87

Conditional Mean Approach: VII

6

3

0

−3

−6
−6 −3 0 3 6

ol

E{Rl|Ol = ol}

• conditional mean shrinkage rule for pl = 0.95 (i.e., ≈ 95% of
signal coefficients are 0); σ2

nl
= 1; and σ2

Gl
= 5 (curve furthest

from dotted diagonal), 10 and 25 (curve nearest to diagonal)

• as σ2
Gl

gets large (i.e., large signal coefficients increase in size),
shrinkage rule starts to resemble mid thresholding rule
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Wavelet-Based Shrinkage: I

• assume model of stochastic signal plus Gaussian IID noise:
X = C + ε so that W = WX = WC +Wε ≡ R + e

• component-wise, have Wj,t = Rj,t + ej,t

• form partial DWT of level J0, shrink Wj’s, but leave VJ0
alone

• assume E{Rj,t} = 0 (reasonable for Wj, but not for VJ0
)

• use a conditional mean approach with the sparse signal model

− Rj,t has distribution dictated by (1− Ij,t)N (0,σ2
G), where

P
[
Ij,t = 1

]
= p and P

[
Ij,t = 0

]
= 1− p

− Rj,t’s are assumed to be IID

− model for ej,t is Gaussian with mean 0 and variance σ2
ε

− note: parameters do not vary with j or t

WMTSA: 424 II–89

Wavelet-Based Shrinkage: II

• model has three parameters σ2
G, p and σ2

ε , which need to be set

• let σ2
R and σ2

W be variances of RVs Rj,t and Wj,t

• have relationships σ2
R = (1− p)σ2

G and σ2
W = σ2

R + σ2
ε

− set σ̂2
ε = σ̂2

(mad) using W1

− let σ̂2
W be sample mean of all W 2

j,t

− given p, let σ̂2
G = (σ̂2

W − σ̂2
ε )/(1− p)

− p usually chosen subjectively, keeping in mind that p is pro-
portion of noise-dominated coefficients (can set based on
rough estimate of proportion of ‘small’ coefficients)

WMTSA: 424–426 II–90

Examples of Wavelet-Based Shrinkage: I
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• shrinkage signal estimates of NMR spectrum based upon level
J0 = 6 partial LA(8) DWT and conditional mean with p = 0.9
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Examples of Wavelet-Based Shrinkage: II
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• same as before, but now with p = 0.95
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Examples of Wavelet-Based Shrinkage: III
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• same as before, but now with p = 0.99 (as p → 1, we declare
there are proportionately fewer significant signal coefficients,
implying need for heavier shrinkage)
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Comments on ‘Next Generation’ Denoising: I

T −2V6
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−1.5
0 2 4 6 8 10 12

t (seconds)

• ‘classical’ denoising looks at each Wj,t alone; for ‘real world’
signals, coefficients often cluster within a given level and persist
across adjacent levels (ECG series offers an example)
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Comments on ‘Next Generation’ Denoising: II

• here are some ‘next generation’ approaches that exploit these
‘real world’ properties:

− Crouse et al. (1998) use hidden Markov models for stochastic
signal DWT coefficients to handle clustering, persistence and
non-Gaussianity

− Huang and Cressie (2000) consider scale-dependent multi-
scale graphical models to handle clustering and persistence

− Cai and Silverman (2001) consider ‘block’ thesholding in
which coefficients are thresholded in blocks rather than indi-
vidually (handles clustering)

− Dragotti and Vetterli (2003) introduce the notion of ‘wavelet
footprints’ to track discontinuities in a signal across different
scales (handles persistence)
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Comments on ‘Next Generation’ Denoising: III

• ‘classical’ denoising also suffers from problem of overall signifi-
cance of multiple hypothesis tests

• ‘next generation’ work integrates idea of ‘false discovery rate’
(Benjamini and Hochberg, 1995) into denoising (see Wink and
Roerdink, 2004, for an applications-oriented discussion)

• for more recent developments (there are a lot!!!), see

− review article by Antoniadis (2007)

− Chapters 3 and 4 of book by Nason (2008)

− October 2009 issue of Statistica Sinica, which has a spe-
cial section entitled ‘Multiscale Methods and Statistics: A
Productive Marriage’
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Wavelet-Based Decorrelation of Time Series: Overview

• DWT well-suited for decorrelating certain time series, including
ones generated from a fractionally differenced (FD) process

• on synthesis side, leads to

− DWT-based simulation of FD processes

− wavelet-based bootstrapping

• on analysis side, leads to

− wavelet-based estimators for FD parameters

− test for homogeneity of variance (will cover briefly)

− test for trends (won’t discuss – see Craigmile et al., 2004,
for details)
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DWT of an FD Process: I

X ρ̂X,τ

5

0
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1

0

−1
0 256 512 768 1024 0 32

t τ (lag)

• realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for τ ≥ 0,

ρ̂X,τ ≡
∑N−1−τ

t=0 XtXt+τ
∑N−1

t=0 X2
t

• note that ACS dies down slowly
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DWT of an FD Process: II
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• LA(8) DWT of FD(0.4) series and sample ACSs for each Wj
& V7, along with 95% confidence intervals for white noise
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MODWT of an FD Process

Ṽ7

W̃7

W̃6

W̃5

W̃4

W̃3

W̃2

W̃1

0
−2

2
−2

2
−2

2
−2

2
−2

2
−2

2
−2

2
−2

1
−1

1
−1

1
−1

1
−1

1
−1

1
−1

1
−1

1
−1

0 32
τ (lag)

• LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT
coefficients, none of which are approximately uncorrelated
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DWT of an FD Process: III

• in contrast to X, ACSs for Wj consistent with white noise

• variance of RVs in Wj increases with j: for FD process,

var {Wj,t} ≈ cτ2δ
j ≡ Cj,

where c is a constant depending on δ but not j, and τj = 2j−1

is scale associated with Wj

• for white noise (δ = 0), var {Wj,t} is the same for all j

• dependence in X thus manifests itself in wavelet domain by
different variances for wavelet coefficients at different scales
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Correlations Within a Scale and Between Two Scales

• let {sX,τ} denote autocovariance sequence (ACVS) for {Xt};
i.e., sX,τ = cov {Xt,Xt+τ}

• let {hj,l} denote equivalent wavelet filter for jth level

• to quantify decorrelation, can write

cov {Wj,t,Wj′,t′} =

Lj−1∑

l=0

Lj′−1∑

l′=0

hj,lhj′,l′sX,2j(t+1)−l−2j′(t′+1)+l′
,

from which we can get ACVS (and hence within-scale correla-
tions) for {Wj,t}:

cov {Wj,t,Wj,t+τ} =

Lj−1∑

m=−(Lj−1)

sX,2jτ+m

Lj−|m|−1∑

l=0

hj,lhj,l+|m|
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Correlations Within a Scale

j = 1 j = 2 j = 3 j = 4

Haar

D(4)

LA(8)

0.2

0.0

−0.2
0.2

0.0

−0.2
0.2

0.0

−0.2
0 4 0 4 0 4 0 4

τ τ τ τ

• correlations between Wj,t and Wj,t+τ for an FD(0.4) process

• correlations within scale are slightly smaller for Haar

• maximum magnitude of correlation is less than 0.2
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Correlations Between Two Scales: I

j′ = 2 j′ = 3 j′ = 4
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• correlation between Haar wavelet coefficients Wj,t and Wj′,t′

from FD(0.4) process and for levels satisfying 1 ≤ j < j′ ≤ 4
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Correlations Between Two Scales: II

j′ = 2 j′ = 3 j′ = 4
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• same as before, but now for LA(8) wavelet coefficients

• correlations between scales decrease as L increases
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Wavelet Domain Description of FD Process

• DWT acts as a decorrelating transform for FD processes and
other (but not all!) intrinsically stationary processes

• wavelet domain description is simple

− wavelet coefficients within a given scale approximately uncor-
related (refinement: assume 1st order autoregressive model)

− wavelet coefficients have scale-dependent variance controlled
by the two FD parameters (δ and σ2

ε)

− wavelet coefficients between scales also approximately uncor-
related (approximation improves as filter width L increases)
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DWT-Based Simulation

• properties of DWT of FD processes lead to schemes for simu-
lating time series X ≡ [X0, . . . , XN−1]

T with zero mean and
with a multivariate Gaussian distribution

• with N = 2J , recall that X = WTW, where

W =





W1
W2

...
Wj

...
WJ
VJ




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Basic DWT-Based Simulation Scheme

• assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

• assume Wj to have variance Cj = cτ2δ
j

• assume single RV in VJ to have variance CJ+1 (see Percival
and Walden, 2000, for details on how to set CJ+1)

• approximate FD time series X via Y ≡WTΛ1/2Z, where

− Λ1/2 is N ×N diagonal matrix with diagonal elements

C
1/2
1 , . . . , C

1/2
1︸ ︷︷ ︸

N
2 of these

, C
1/2
2 , . . . , C

1/2
2︸ ︷︷ ︸

N
4 of these

, . . . , C
1/2
J−1, C

1/2
J−1︸ ︷︷ ︸

2 of these

, C
1/2
J , C

1/2
J+1

− Z is vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance

WMTSA: 355 II–108



Refinements to Basic Scheme: I

• covariance matrix for approximation Y does not correspond to
that of a stationary process

• recall W treats X as if it were circular

• let T be N ×N ‘circular shift’ matrix:

T





Y0
Y1
Y2
Y3



 =





Y1
Y2
Y3
Y0



 ; T 2





Y0
Y1
Y2
Y3



 =





Y2
Y3
Y0
Y1



 ; etc.

• let κ be uniformily distributed over 0, . . . , N − 1

• define Ỹ ≡ T κY

• Ỹ is stationary with ACVS given by, say, s
Ỹ ,τ
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Refinements to Basic Scheme: II

• Q: how well does {s
Ỹ ,τ

} match {sX,τ}?

• due to circularity, find that s
Ỹ ,N−τ

= s
Ỹ ,τ

for τ = 1, . . . , N/2

• implies s
Ỹ ,τ

cannot approximate sX,τ well for τ close to N

• can patch up by simulating Ỹ with M > N elements and then
extracting first N deviates (M = 4N works well)
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Refinements to Basic Scheme: III

M = N M = 2N M = 4N2.5

2.0

1.5

1.0

0.5
0 64 0 64 0 64

τ τ τ

• plot shows true ACVS {sX,τ} (thick curves) for FD(0.4) process
and wavelet-based approximate ACVSs {s

Ỹ ,τ
} (thin curves)

based on an LA(8) DWT in which an N = 64 series is ex-
tracted from M = N , M = 2N and M = 4N series
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Example and Some Notes

5

0

−5
0 256 512 768 1024

t

• simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

• notes:

− can form realizations faster than best exact method

− can efficiently simulate extremely long time series in ‘real-
time’ (e.g, N = 230 = 1, 073, 741, 824 or even longer!)

− effect of random circular shifting is to render time series
slightly non-Gaussian (a Gaussian mixture model)
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Wavelet-Domain Bootstrapping

• for many (but not all!) time series, DWT acts as a decorrelating
transform: to a good approximation, each Wj is a sample of a
white noise process, and coefficients from different sub-vectors
Wj and Wj′ are also pairwise uncorrelated

• variance of coefficients in Wj depends on j

• scaling coefficients VJ0
are still autocorrelated, but there will

be just a few of them if J0 is selected to be large

• decorrelating property holds particularly well for FD and other
processes with long-range dependence

• above suggests the following recipe for wavelet-domain boot-
strapping of a statistic of interest, e.g., sample autocorrelation
sequence ρ̂X,τ at unit lag τ = 1
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Recipe for Wavelet-Domain Bootstrapping

1. given X of length N = 2J , compute level J0 DWT (the choice
J0 = J − 3 yields 8 coefficients in WJ0

and VJ0
)

2. randomly sample with replacement from Wj to create boot-

strapped vector W
(b)
j , j = 1, . . . , J0

3. create V
(b)
J0

using 1st-order autoregressive parametric bootstrap

4. applyWT to W
(b)
1 , . . ., W

(b)
J0

and V
(b)
J0

to obtain bootstrapped

time series X(b) and then form ρ̂
(b)
X,1

• repeat above many times to build up sample distribution of
bootstrapped autocorrelations
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Illustration of Wavelet-Domain Bootstrapping
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• Haar DWT of FD(0.45) series X (left-hand column) and wavelet-
domain bootstrap thereof (right-hand)
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Wavelet-Domain Bootstrapping of FD Series

• approximations to true PDF using (a) Haar & (b) LA(8) wavelets

!"#

!$ % $

%

$% !&#

!$ % $

vertical line
indicates ρ̂X,1

ρ̂(m)
1 ρ̂(m)

1

• using 50 FD time series and the Haar DWT yields:

average of 50 sample means
.
= 0.35 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.096 (truth

.
= 0.107)

• using 50 FD time series and the LA(8) DWT yields:

average of 50 sample means
.
= 0.43 (truth

.
= 0.53)

average of 50 sample SDs
.
= 0.098 (truth

.
= 0.107)
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MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, δ and σ2
ε

• given X = [X0, X1, . . . , XN−1]
T with N = 2J , suppose we

want to estimate δ and σ2
ε

• if X is stationary (i.e. δ < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method

WMTSA: 361 II–117

MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

L(δ,σ2
ε | X) ≡ 1

(2π)N/2|ΣX|1/2
e−XTΣ−1

X X/2

where ΣX is covariance matrix for X, with (s, t)th element
given by sX,s−t, and |ΣX|& Σ−1

X denote determinant & inverse

• ML estimators of δ and σ2
ε maximize L(δ,σ2

ε | X) or, equiva-
lently, mininize

−2 log (L(δ,σ2
ε | X)) = N log (2π) + log (|ΣX|) + XTΣ−1

X X

• exact MLEs computationally intensive, mainly because of the
need to deal with |ΣX| and Σ−1

X

• good approximate MLEs of considerable interest
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MLEs of FD Parameters: III

• key ideas behind first wavelet-based approximate MLEs

− have seen that we can approximate FD time series X by
Y = WTΛ1/2Z, where Λ1/2 is a diagonal matrix, all of
whose diagonal elements are positive

− since covariance matrix for Z is IN , the one for Y is

WTΛ1/2IN(WTΛ1/2)T = WTΛ1/2Λ1/2W = WTΛW ≡ Σ̃X,

where Λ ≡ Λ1/2Λ1/2 is also diagonal

− can consider Σ̃X to be an approximation to ΣX

• leads to approximation of log likelihood:

−2 log (L(δ,σ2
ε | X)) ≈ N log (2π) + log (|Σ̃X|) + XT Σ̃−1

X X
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MLEs of FD Parameters: IV

• Q: so how does this help us?

− easy to invert Σ̃X:

Σ̃−1
X =

(
WTΛW

)−1
= (W)−1 Λ−1

(
WT

)−1
= WTΛ−1W,

where Λ−1 is another diagonal matrix, leading to

XT Σ̃−1
X X = XTWTΛ−1WX = WTΛ−1W

− easy to compute the determinant of Σ̃X:

|Σ̃X| = |WTΛW| = |ΛWWT | = |ΛIN | = |Λ|,
and the determinant of a diagonal matrix is just the product
of its diagonal elements
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MLEs of FD Parameters: V

• define the following three functions of δ:

C′j(δ) ≡
∫ 1/2j

1/2j+1

2j+1

[4 sin2(πf)]δ
df ≈

∫ 1/2j

1/2j+1

2j+1

[2πf ]2δ
df

C′J+1(δ) ≡ NΓ(1− 2δ)

Γ2(1− δ)
−

J∑

j=1

N

2jC
′
j(δ)

σ2
ε(δ) ≡ 1

N




V 2

J,0

C′J+1(δ)
+

J∑

j=1

1

C′j(δ)

N
2j
−1

∑

t=0

W 2
j,t




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MLEs of FD Parameters: VI

• wavelet-based approximate MLE δ̃ for δ is the value that min-
imizes the following function of δ:

l̃(δ | X) ≡ N log(σ2
ε(δ)) + log(C′J+1(δ)) +

J∑

j=1

N

2j log(C′j(δ))

• once δ̃ has been determined, MLE for σ2
ε is given by σ2

ε(δ̃)

• computer experiments indicate scheme works quite well
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Other Wavelet-Based Estimators of FD Parameters

• second MLE approach: formulate likelihood directly in terms
of nonboundary wavelet coefficients

− handles stationary or nonstationary FD processes
(i.e., need not assume δ < 1/2)

− handles certain deterministic trends

• alternative to MLEs are least square estimators (LSEs)

− recall that, for large τ and for β = 2δ − 1, have

log (ν2
X(τj)) ≈ ζ + β log (τj)

− suggests determining δ by regressing log (ν̂2
X(τj)) on log (τj)

over range of τj
− weighted LSE takes into account fact that variance of log (ν̂2

X(τj))
depends upon scale τj (increases as τj increases)
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Homogeneity of Variance: I

• because DWT decorrelates FD and related processes, nonbound-
ary coefficients in Wj should resemble white noise; i.e.,

cov {Wj,t,Wj,t′} ≈ 0

when t -= t′, and var {Wj,t} should not depend upon t

• can test for homogeneity of variance in X using Wj over a
range of levels j

• suppose U0, . . . , UN−1 are independent normal RVs with E{Ut} =
0 and var {Ut} = σ2

t

• want to test null hypothesis H0 : σ2
0 = σ2

1 = · · · = σ2
N−1

• can test H0 versus a variety of alternatives, e.g.,

H1 : σ2
0 = · · · = σ2

k -= σ2
k+1 = · · · = σ2

N−1
using normalized cumulative sum of squares
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Homogeneity of Variance: II

• to define test statistic D, start with

Pk ≡
∑k

j=0 U2
j

∑N−1
j=0 U2

j

, k = 0, . . . , N − 2

and then compute D ≡ max (D+, D−), where

D+ ≡ max
0≤k≤N−2

(
k + 1

N − 1
− Pk

)
& D− ≡ max

0≤k≤N−2

(
Pk −

k

N − 1

)

• can reject H0 if observed D is ‘too large,’ where ‘too large’ is
quantified by considering distribution of D under H0

• need to find critical value xα such that P[D ≥ xα] = α for,
e.g., α = 0.01, 0.05 or 0.1
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Homogeneity of Variance: III

• once determined, can perform α level test of H0:

− compute D statistic from data U0, . . . , UN−1

− reject H0 at level α if D ≥ xα

− fail to reject H0 at level α if D < xα

• can determine critical values xα in two ways

−Monte Carlo simulations

− large sample approximation to distribution of D:

P[(N/2)1/2D ≥ x] ≈ 1 + 2
∞∑

l=1

(−1)le−2l2x2

(reasonable approximation for N ≥ 128)
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Homogeneity of Variance: IV

• idea: given time series {Xt}, compute D using nonboundary
wavelet coefficients Wj,t (there are M ′

j ≡ Nj − L′j of these):

Pk ≡

∑k
t=L′j

W 2
j,t

∑Nj−1

t=L′j
W 2

j,t

, k = L′j, . . . , Nj − 2

• if null hypothesis rejected at level j, can use nonboundary
MODWT coefficients to locate change point based on

P̃k ≡

∑k
t=Lj−1 W̃ 2

j,t
∑N−1

t=Lj−1 W̃ 2
j,t

, k = Lj − 1, . . . , N − 2

along with analogs D̃+
k and D̃−

k of D+
k and D−

k
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Example – Annual Minima of Nile River: I

x

x

x

x

o

o

o

o

15
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9

1

0.1

0.01
600 1300

years
1 2 4 8

scale (years)

• left-hand plot: annual minima of Nile River

• new measuring device introduced around year 715

• right: Haar ν̂2
X(τj) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon χ2
η3

approximation
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Example – Annual Minima of Nile River: II

l̃(δ | X)

δ

−100

−300

−500
0.0 0.1 0.2 0.3 0.4 0.5

• based upon last 512 values (years 773 to 1284), plot shows
l̃(δ | X) versus δ for the first wavelet-based approximate MLE
using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

− wavelet-based approximate MLE is value minimizing upper
curve: δ̃

.
= 0.4532

− exact MLE is value minimizing lower curve: δ̂
.
= 0.4452
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Example – Annual Minima of Nile River: III

• results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels
τj M ′

j D 10% 5% 1%

1 year 331 0.1559 0.0945 0.1051 0.1262
2 years 165 0.1754 0.1320 0.1469 0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
8 years 41 0.2313 0.2572 0.2864 0.3436

• can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales τ1 & τ2, but not at larger scales
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Example – Annual Minima of Nile River: IV
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• Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales τ1 & τ2 (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)
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Summary

• DWT approximately decorrelate certain time series, including
ones coming from FD and related processes

• leads to schemes for simulating time series and bootstrapping

• also leads to schemes for estimating parameters of FD process

− approximate maximum likelihood estimators (two varieties)

− weighted least squares estimator

• can also devise wavelet-based tests for

− homogeneity of variance

− trends (see Craigmile et al., 2004, for details)
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