Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

e wavelets are analysis tools for time series and images (mostly)

e following work on continuous wavelet transform by Morlet and
co-workers in 1983, Daubechies, Mallat and others introduced
discrete wavelet transform (DWT) in 1988

e begin with qualitative description of the DWT
e discuss two key descriptive capabilities of the DW'T:

— multiresolution analysis (an additive decomposition)
— wavelet variance or spectrum (decomposition of sum of squares)

e look at how DWT is formed based on a wavelet filter

e discuss maximal overlap DWT (MODWT)
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Qualitative Description of DWT

elet X = [Xg, X1,...,Xy_1]7 be a vector of N time series
values (note: ‘I denotes transpose; i.e., X is a column vector)

e assume initially N = 27 for some positive integer J (will relax
this restriction later on)

e DWT is a linear transform of X yielding N DWT coefficients
e notation: W = WX
— W is vector of DWT coefficients (jth component is ;)

—Wis N x N orthonormal transform matrix
e orthonormality says WIW = Iy (N x N identity matrix)
o inverse of W is just its transpose, so WWT =T N also

WMTSA: 57, 53 -2

Implications of Orthonormality

o lct WJT. denote the jth row of W, where 7 =0,1,..., N — 1
e let Wj,l denote [th element of Wie

; T T
e consider two rows, say, Wj. and Wi {

e orthonormality says

= 1, when j=k
Wie, Whe) = Wi W =< Y
< o Trk ) 12(:) JTR {O, when j # k

— (Wie, W) is inner product of jth & kth rows
— (Wje, Wije) = [[Wjel|? is squared norm (energy) for W,

WMTSA: 57, 42 -3

Example: the Haar DWT

e N = 16 example of Haar DWT matrix W

W Shp tessnararnana
[roglenensmnensne 9 emnagtenenne
10 premmsnnagtlanea
eennns Tonnasann 11 [resensannnna Pt
T ] WL R

= W N = O

e ] T r—L] LN

6 [rrmmmmrrrrnalor 14 prprtaaeenee

Y I I S I

0 5 10 15 0 5 10 15
t t

e note that rows are orthogonal to each other

WMTSA: 57 14




Haar DWT Coefficients: 1

e obtain Haar DWT coefficients W by premultiplying X by W:

W = WX
e jth coefficient W is inner product of jth row Wjji and X:
W= Wi, X)
e can interpret coefficients as difference of averages
e to see this, let

1
X\ = 1 Z Xy = ‘scale X\ average

—note: X¢(1) = Xy = scale 1 ‘average’
—note: X y_1(N) = X = sample average

WMTSA: 58 I-5

Haar DWT Coefficients: 11

e consider form Wy = (Wpe, X) takes in N = 16 example:

. — -
Wy Xy wgeesssseeesesse gqum o X (1) — X (1)
x el

e similar interpretation for W1y, ..., Wy ]
N_

Wy Xy sessssssssnnnnst - qum o Xp5(1) — Xqu(
Xt WH—L

WMTSA: 58 -6

= W7 = (Wre, X):

1)

Haar DWT Coefficients: III
e now consider form of Wy = Wg = (Ws,, X):
2

Wi

X,

II Wia Xy =tgeesssssses sum o< X3(2) — X(2)

e similar interpretation for Wy  ,..., W3y
N SNy

WMTSA: 58 -7

Haar DWT Coefficients: IV

o Wiy = Wig = (Wi2e, X) takes the following form:
1

Wp it iessssess B B
mW%ﬁi‘%%*%W“”smm%w—&w
X

e continuing in this manner, come to Wy _o = (W) 4e, X):

Wi Trmmr ot B B
Wig Xy wetelemetfen qum oc X 15(8) — X7(8
X, WHL
WMTSA: 58 -8
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Haar DWT Coefficients: V

e final coefficient W_1 = W5 has a different interpretation:

RLLLTALALELLLLE
Wis

Wlf),tXt W‘-‘LLL sum O(Ylj(16>
Xi W-’L

e structure of rows in W
— first % rows yield W;’s oc changes on scale 1
— next % rows yield W;’s oc changes on scale 2
— next % rows yield W;’s o< changes on scale 4
— next to last row yields W; oc change on scale %

— last row yields W; oc average on scale N

WMTSA: 58-59 -9

Structure of DWT Matrices

° % wavelet coefficients for scale 7; = 21—1 g=1...,J
— 7= 21~ is standardized scale
— 7; A is physical scale, where A is sampling interval
e each W localized in time: as scale T, localization |
e rows of W for given scale 7;:
— circularly shifted with respect to each other
— shift between adjacent rows is 27; = 2/
e similar structure for DWTs other than the Haar
e differences of averages common theme for DWTs

— simple differencing replaced by higher order differences
— simple averages replaced by weighted averages

WMTSA: 59-61 I-10

Two Basic Decompositions Derivable from DWT

e additive decomposition

— reexpresses X as the sum of J + 1 new time series, each of
which is associated with a particular scale 7;
— called multiresolution analysis (MRA)

e energy decomposition

— vyields analysis of variance across J scales

— called wavelet spectrum or wavelet variance

WMTSA: 61-66 11

Partitioning of DWT Coefficient Vector W

e decompositions are based on partitioning of W and W

e partition W into subvectors associated with scale:

* W, has N/ 2J elements (scale T = 2)=1 changes)
. J N_N_ N —9oJ —
note: Zj:1§—7+z+~~+2+1—2 —1=N-1
e V; has 1 element, which is equal to v/N - X (scale N average)

WMTSA: 61-62 12




Example of Partitioning of W

e consider time series X of length N = 16 & its Haar DWT W

W2 W3 W4 V4

o
wt

WMTSA: 62, 42 13

Partitioning of DWT Matrix W

e partition VW commensurate with partitioning of W:

oW is QHJ x N matrix (related to scale 7; = 2~1 changes)

e V;jis 1 x N row vector (each element is ﬁ)

WMTSA: 63 I-14

Example of Partitioning of W

e N = 16 example of Haar DW'T matrix W

1

. 8

3
1

. 9

I
L]

a2 10

L1}

1 11
Wi

LL)
L111}

12

LLEL]
LIT1}

1 13

ﬂ".m.mliw 14

TmTI_i_IJ_-_'_-J_'J_L

=~ O U= W N = O
-
La

15

'
]
1

0 5 10 15

e two properties: (a) W; = W;X and (b) WJ-W]T =

WMTSA: 57, 64 15

0 5 10 15
t

Ws

Wi
Wi
1Z

In

2]

DWT Analysis and Synthesis Equations

e recall the DWT analysis equation W = WX

e WI'W = Iy because W is an orthonormal transform
e implies that WTW = WIWX = X

e yields DW'T synthesis equation:

W,
T T T T T W2
X = WIW = [WI,WQ,...,WJ,VJ ;
W
\&
J
=Y WIW;+ V]V,
7=1
WMTSA: 63 I-16




Multiresolution Analysis: I

e synthesis equation leads to additive decomposition:
J J
T T —_
X=> WiW;+V; V=) D+,
J=1 J=1

oD, = WJTWj is portion of synthesis due to scale 7;
e D; is vector of length N and is called jth ‘detail’
o S;= V;VJ = X1, where 1 is a vector containing N ones

(later on we will call this the ‘smooth’ of Jth order)

e additive decomposition called multiresolution analysis (MRA)

WMTSA: 64-65 =17

Multiresolution Analysis: II

e example of MRA for time series of length N = 16

—
T Dy
Pt T Dy
AT O
JTr-;JTT%rLﬁL Dy

0 5 10 15
t

e adding values for, e.g., t = 14 in Dy, ..., Dy & Sy yields X4

WMTSA: 64 I-18

Energy Preservation Property of DWT Coefficients

e define ‘energy’ in X as its squared norm:
N—-1
IX[? = (X, X) =XIX = 3 X7
t=0
e energy of X is preserved in its DW'T coefficients W because
W|?=wWIw = wx)Twx
= XTwiwx
= XTIyX =XTX = |X]]?

e note: same argument holds for any orthonormal transform

WMTSA: 43 19

Wavelet Spectrum (Variance Decomposition): 1

e let X denote sample mean of X;'s: X = % Z{lﬁl X

o let &% denote sample variance of X¢'s:

= ) L Nl )
22 5 2 3
Ox =77 (X —X) :N§ Xf—X
t=0 t=0
1 2 -2
= —|IX]|* =X
]1V|| I
2
= _|W|P=X
~IWl

. J 1 <2
o since [W[* = 325 [[W[I* + [ V[* and 1|V, =X

J
1
2 2
X =% > Iw|
=

WMTSA: 62 20
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Wavelet Spectrum (Variance Decomposition): IT

e define discrete wavelet power spectrum:
Px (7)) = %HW]‘HQ, where 7; = 9j—1

e gives us a scale-based decomposition of the sample variance:
J
o X = Z P X(T ])
J=1

e in addition, each W in W associated with a portion of X;
ie., W]-Qt offers scale- & time-based decomposition of &g(

WMTSA: 62 I-21

Wavelet Spectrum (Variance Decomposition): III

e wavelet spectra for time series X and Y of length IV = 16,
each with zero sample mean and same sample variance

20 03[
X_ 0 [ { { [ I l l It . l ‘ PX<T])
-2 C ool ]
20 0.3
Y 0 : l [ [ I 1 ‘ { 1 l { I PY<TJ)
—2L 1 I | | 0.0 L1
0 5 10 15 1248
t 7j
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Defining the Discrete Wavelet Transform (DWT)

e can formulate DWT via elegant ‘pyramid’ algorithm
e defines W for non-Haar wavelets (consistent with Haar)
e computes W = WX using O(N) multiplications

— ‘brute force’ method uses O(N?) multiplications

— faster than celebrated algorithm for fast Fourier transform!
(this uses O(N - logy(N)) multiplications)

e can formulate algorithm using linear filters or matrices
(two approaches are complementary)

e need to review ideas from theory of linear (time-invariant) filters

WMTSA: 68 23

Fourier Theory for Sequences: 1

o let {a;} denote a real-valued sequence such that Y, a7 < 0o
e discrete Fourier transform (DFT) of {a;}:

A(f) = Zaw—i%ﬁ
7

o f called frequency: e~ 2™/t = cos(2r ft) — i sin(2n ft)

e A(f) defined for all £, but 0 < f < 1/2 is of main interest:
— A(-) periodic with unit period, i.e., A(f + 1) = A(f), all f
— A(—f) = A*(f), complex conjugate of A(f)

— need only know A(f) for 0 < f < 1/2 to know it for all f

e ‘low frequencies’ are those in lower range of [0, 1/2]

e ‘high frequencies’ are those in upper range of [0, 1/2]

WMTSA: 21-22 24




Fourier Theory for Sequences: 11

e can recover (synthesize) {a;} from its DFT:

1/2 ,
/ At af = ay

—1/2

left-hand side called inverse DFT of A(-)
e {a;} and A(-) are two representations for one ‘thingy’
o large |A(f)| says e2™ft important in synthesizing {a¢}; ie.,
{a¢} resembles some combination of cos(27 ft) and sin(27 ft)

WMTSA: 22-23 1-25

Convolution of Sequences

e given two sequences {as} and {b;}, define their convolution by

e.¢]

ct = Z aubt—u

U=—00

e DFT of {¢;} has a simple form, namely,
0

> e T = A(F)B(S),

t=—00
where A(-) is the DFT of {a;}, and B(-) is the DFT of {b:};
i.e., just multiply two DF'Ts together!!!

WMTSA: 24 1-26

Basic Concepts of Filtering

e convolution & linear time-invariant filtering are same concepts:

— {bt} is input to filter
— {at} represents the filter
— {et} s filter output
o flow diagram for filtering: {b;} — — {1}
e {a;} is called impulse response sequence for filter
e its DFT A(-) is called transfer function
e in general A(-) is complex-valued, so write A(f) = |A(f)|ei9<f)

— |A(f)| defines gain function
— A(f) = |A(f))? defines squared gain function
— 0(+) called phase function (well-defined at f if |A(f)| > 0)

WMTSA: 25 I-27

Example of a Low-Pass Filter

o o 3 =0
e consider by = % (%) +% (—%) &ap = %, t=—1or1l
0, otherwise

i o} [ {as}[ {et}
0 --T!TTTTTTTTT!:-- oy t --mTTTTTTTw:-
S g
2 B[ AO[ AGBL)

1 -

0 \\ | ‘\‘\w\ \L R

0.0 0.50.0 0.50.0 0.5

f f f

e note: A(-) & B(-) both real-valued (A(-) = its gain function)

WMTSA: 25-26 28




Example of a High-Pass Filter

Lot=0
e consider same {b¢}, but now let a; = —%1, t=—-1orl
0, otherwise
I {b:} {ai}[ {ci}
0 --F!TTTTTTTTT!:-- *T* t agngn n ? om .t.
e
2f B() [ A() A()B(")
1A
0 \ ) //\ e
0.0 0.50.0 0.50.0 05
f ! f

e note: {a¢} resembles some wavelet filters we'll see later

WMTSA: 26-27 1-29

The Wavelet Filter: I

e precise definition of DW'T begins with notion of wavelet filter

elet {h;:1=0,...,L—1} be areal-valued filter of width L
— both hg and hj,_1 must be nonzero
— for convenience, will define Ay =0 forl < O0and (> L

— L must be even (2,4,6,8,...) for technical reasons (hence
ruling out {as} on the previous overhead)

WMTSA: 26-27 1-30

The Wavelet Filter: 11

e {h;} called a wavelet filter if it has these 3 properties

1. summation to zero:

2. unit energy:
L-1
2
D =1
=0
3. orthogonality to even shifts: for all nonzero integers n, have
L—-1
> Wiy, =0
=0

e 2 and 3 together are called the orthonormality property

WMTSA: 69 I-31

The Wavelet Filter: I1I

e summation to zero and unit energy relatively easy to achieve
e orthogonality to even shifts is key property & hardest to satisfy
e define transfer and squared gain functions for wavelet filter:
L—-1
H(f) =Y e ™ and H(f) = |H(f)P

=0
e orthonormality property is equivalent to
H(f)+H(f+3) =2 forall f

(an elegant — but not obvious! — result)

WMTSA: 69-70 32




Haar Wavelet Filter

e simplest wavelet filter is Haar (L = 2): hg = % & hy = —ﬁ

e note that hg+ hy = 0 and h% + h% = 1, as required

e orthogonality to even shifts also readily apparent

hi—o

o —
I hihy_og —ssssssssssssssss gy = ()

WMTSA: 69-70 133

D(4) Wavelet Filter: 1

e next simplest wavelet filter is D(4), for which L = 4:

_1-3 _ —3+/3 3443 _ —1-4/3
ho = /2 hi = 2 ha = /2 hg = 1,2
— ‘D’ stands for Daubechies

— L = 4 width member of her ‘extremal phase’ wavelets

e computations show Y, iy =0& ), hl2 =1, as required

e orthogonality to even shifts apparent except for +2 case:

hihy—o *'IL"““""* sum = 0
hl,z ""AJT—

WMTSA: 59 1-34

D(4) Wavelet Filter: 11

e (): what is rationale for D(4) filter?

e consider Xtm =Xt — Xp 1 =ap Xt + a1 X4,
where {ag = 1,a; = —1} defines 1st difference filter:
1
(X} — {1 -1} — {x
— Haar wavelet filter is normalized 1st difference filter
— Xt(l) is difference between two ‘1 point averages’
e consider filter ‘cascade’ with two 1st difference filters:
2
(X — {1 -] —[{1, -1 — (x?}

e by considering convolution of {1, —1} with itself, can reexpress
the above using a single ‘equivalent’ (2nd difference) filter:

(X} — — {x?

WMTSA: 60-61 1-35

D(4) Wavelet Filter: III

e renormalizing and shifting 2nd difference filter yields high-pass
filter considered earlier:

1 _
5, t=0

a; = —%, t=—1orl
0, otherwise

e consider ‘2 point weighted average’ followed by 2nd difference:

{Xt} - ‘{a, b} - ‘{17 —2, 1}‘ - {Yi}

e convolution of {a,b} and {1,—2,1} yields an equivalent filter,
which is how the D(4) wavelet filter arises:

{Xt} — {ho, h1, ho, hs}| — {Yi}

WMTSA: 60-61 1-36




D(4) Wavelet Filter: IV

e using conditions
1. summation to zero: hg+ h1 + ho + hsy =0
2. unit energy: h(% + h% + h% + h% =1
3. orthogonality to even shifts: hoho + hihg =0
can solve for feasible values of a and b

e one solution is @ = % =048 and b = %5/3

(other solutions yield essentially the same filter)

=0.13

e interpret D(4) filtered output as changes in weighted averages
— ‘change’ now measured by 2nd difference (1st for Haar)
— average is now 2 point weighted average (1 point for Haar)

— can argue that effective scale of weighted average is one

WMTSA: 60-61 1-37

Another Popular Daubechies Wavelet Filter

e LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)

hihy—2 *"‘TLH“"“* sum = 0

hihj_y —eestwepmesssass g = ()

hy
hi—s

hi—y
hihj_g —eesss=sssssssas qum = ()

T

hi—g

e resembles three-point high-pass filter {—%, %, —%} (somewhat)

e can interpret this filter as cascade consisting of

— 4th difference filter
— weighted average filter of width 4, but effective width 1

o filter output can be interpreted as changes in weighted averages

WMTSA: 108-109 [-38

First Level Wavelet Coefficients: I

e given wavelet filter {h;} of width L & time series of length
N =2/ , obtain first level wavelet coefficients as follows

e circularly filter X with wavelet filter to yield output

L1 L1
S Xp =Y WXy jmean, t=0,...,N-1;
1=0 1=0

ie., if t — 1 does not satisty 0 < ¢t —1 < N — 1, interpret X;_;
as Xy mod N €8 X—1 = Xy_pand X9 =Xy o
e take every other value of filter output to define
L—1
Wl,t = Z M Xoti1—imod Ny t=0,..., % -1
=0
{W1 4} formed by downsampling filter output by a factor of 2

WMTSA: 70 -39

First Level Wavelet Coefficients: I1

e example of formation of {W7 +}

R
h?le)fl mod 161'111—""...'“'r Z - TLLF.}J_JJTL‘#
X157l mod 16
12
Wiy fetlnt

o {Wy 4} are unit scale wavelet coefficients — these are the ele-
ments of W1 and first N/2 elements of W = WX

e also have W1 = W X, with W being first N/2 rows of W
e hence elements of W dictated by wavelet filter

WMTSA: 70 140




Upper Half W, of Haar DWT Matrix W

e consider Haar wavelet filter (L = 2): hy = % & hy = —ﬁ
e when N = 16, W looks like

(hihg 0 0 000 00O 0O 0O0O0O0O0 0]
0 0hihg0O00O00O0O0O0OO0DOOO
000 0hhOOOOO0O0O0DO0O0O0
00000 O0hHhOOO0OO0DO0O00
000000 O0O0hHhOOODOOO
00000O0O0O0GO0O0AhHhODOODO
00000O00O0GO0O0O0O0AhhO OO
(0000000000000 0 hyhg

e rows obviously orthogonal to each other

I-41

Upper Half W, of D(4) DWT Matrix W

e when L =4 & N = 16, W looks like
[hihg 0 00 0 0 0 0 0
h3 ho hy hg 0 0 0 0 0 O
0 0 hshghyhg 0O 0 0 0
0 0 0 hghohy hg 0 O
0 0 0 0 hghyhy hg O 0
00 0 0 0 0 hghyghyhy O 0 0
000000 0 0 hghohy hyg O
00000000000 0 hghyhhj

e rows orthogonal because hghg + h1hg =0
e note: (Whe, X) vields Wy = h1 X+ ho X1 + haX14 + ho X5

e unlike other coefficients from above, this ‘boundary’ coefficient
depends on circular treatment of X (a curse, not a feature!)

h

=
w
N}

0
0
0
0

o O O o o
o O O O

OO O oo

o O O O

0
0
0
0
0
0

o O O O
o O O

WMTSA: 81 1-42

Orthonormality of Upper Half of DWT Matrix: I

e can show that, for all L and even N,

L—1

Wit = Z hi X111 mod N> OF, equivalently, Wy =W X
=0

forms half an orthonormal transform; i.e.,

wwi = Iy

e Q: how can we construct the other half of W?

WMTSA: 72 143

The Scaling Filter: 1

e create scaling (or ‘father wavelet’) filter {g;} by reversing {h;}
and then changing sign of coefficients with even indices

{hi} {hi} reversed  {gi}
Haar Tl lT 1
o 1, ,
LA(8) ] ] 1y

o 2 filters related by ¢; = (=) hy 3 & hy = (=1)lgp 1

WMTSA: 75 I-44




The Scaling Filter: 11

e {g;} is ‘quadrature mirror’ filter corresponding to {h;}
e properties 2 and 3 of {h;} are shared by {g;}:

2. unit energy:
L-1
2
D9 =1
=0

3. orthogonality to even shifts: for all nonzero integers n, have

L-1
> G142 =0
1=0

e scaling & wavelet filters both satisfy orthonormality property

WMTSA: 76 1-45

First Level Scaling Coefficients: I

e orthonormality property of {h;} is all that is needed to prove
W is half of an orthonormal transform (never used ), hy = 0)

e going back and replacing h; with g; everywhere yields another
half of an orthonormal transform

e circularly filter X using {g;} and downsample to define
L—1

_ N
Vig= Z 91Xt +1—1mod N» t=0,..., 5 —1
1=0

o {V1 4} called scaling coefficients for level j =1

e place these N/2 coefficients in vector called V1

WMTSA: 77 1-46

First Level Scaling Coefficients: II1

e define V{ in a manner analogous to W so that V| = V1 X
e when L =4 and N = 16, V] looks like
(g1 900 000 00 00

93929190 0 0 0 0 0 0
00939291900 0 0 0
0009392919 0 0
000939291900 0
0000093929190 0 0
0

000000 g3sg9 g1 9
i 0000000000093929190_

e V| obeys same orthonormality property as Wy:
similar to WW{ = I, have VW] = Iy
2 2

92

o O O O
o O OO
OO O OO
o O O O O

o
coococooof

0
0
0
0
0
0

o O O O
o O O
o O O

o

WMTSA: 77 147

Orthonormality of V; and Wy: 1

e (): how does V; help us?
e A: rows of V1 and W are pairwise orthogonal!

e readily apparent in Haar case:

P | —

gihi sum = 0
e T

WMTSA: 77-78 148




Orthonormality of V; and Wy: 11

e let’s check that orthogonality holds for D(4) case also:

glhl—Z Rl Bkt sum = 0

P C—
gih; 1TL‘—» sum = (

b

hl*? *"ﬂlrm

1-49

Orthonormality of V; and W;: III

e implies that
w
P = { Vll]

is an N x N orthonormal matrix since
PPl = [Wl] [W1T7V1T]
Iy On
_ 2 12 =1y

Vi
_ [wowl wivf

On In

2 2

wwi vl

e if N =2 (not of too much interest!), in fact Py = W

eif NV > 2, Py is an intermediate step: V; spans same subspace
as lower half of W and will be further manipulated

Interpretation of Scaling Coefficients: I

e consider Haar scaling filter (L = 2): gy = g1 = %

e when N = 16, matrix V looks like

(g1 900 000000000000 O]
00gigp0000000O0O0OOO
0000g g000000O0O0O00O
000000gg0000O0O0O00
0000000 O0ggo00000
000000000O0GgOoO0O00
000000000O0O0OGgO0
(0000000000000 0 g go

e since Vi = V1 X, each V7 4 is proportional to a 2 point average:

Vip= g1 X0+ goX1 = ﬁX@ + ﬁXl x 71(2) and so forth

51

Interpretation of Scaling Coefficients: 11
e reconsider shapes of {g;} seen so far:

Haar

o for L > 2, can regard Vi 4 as proportional to weighted average

e can argue that effective width of {g;} is 2 in each case; thus
scale associated with V7 ; is 2, whereas scale is 1 for T 4




Frequency Domain Properties of Scaling Filter

e define transfer and squared gain functions for {g;}
L-1

=g & g(f) = [G(f)P

=0
e can argue that G(f) = H(f + %), which, combined with
H(f)+H(f+5) =2,

yields
H(f)+G(f) =

WMTSA: 76 1-53

Frequency Domain Properties of {/;} and {¢;}
esince Wi & V; contain output from filters, consider their

squared gain functions, recalling that H(f) + G(f) = 2
e example: H(-) and G(+) for Haar & D(4) filters

T
S N

0.0 0.1 02 0.3 0.4 0.5 0.0 0.1 02 03 04 OJ

e {h;} is high-pass filter with nominal pass—band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

WMTSA: 73 I-54

Example of Decomposing X into W; and V;: 1

e oxygen isotope records X from Antarctic ice core

—62
—69+ Vi
(] L P |
3.5 ‘
OF ey | o ““‘\‘ it e ‘h “‘ \‘ ‘\ ‘H \‘u” ‘\‘ o ‘u ‘\‘ " “ ‘ W,

=35l L
—42[
=560 o

1800 1850 1900 1950 2000

year

I-55

Example of Decomposing X into W; and V;: 11

e oxygen isotope record series X has N = 352 observations

e spacing between observations is A = 0.5 years

e used Haar DWT, obtaining 176 scaling and wavelet coefficients
e scaling coefficients V' related to averages on scale of 2A

e wavelet coefficients W7 related to changes on scale of A

e coefficients V7 3 and Wy plotted against mid-point of years
associated with Xos and Xozyq

e note: variability in wavelet coefficients increasing with time
(thought to be due to diffusion)

e data courtesy of Lars Karlof, Norwegian Polar Institute, Polar
Environmental Centre, Tromsg, Norway
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Reconstructing X from W; and V;

e in matrix notation, form wavelet & scaling coeflicients via

Wil [wix] Wile
[Vl}_{le}_[Vl]X_ﬂX

e recall that ’PlT Py = I because P; is orthonormal

e since PlT P1X = X, premultiplying both sides by P? yields

7 |Wi Wi T T
P [VJ = Wi Vi [Vl] =W Wi+ V]V =X

oD = WlT W is the first level detail
= VlT V| is the first level ‘smooth’
e X =Dy + & in this notation

WMTSA: 80-81 I-57

Example of Synthesizing X from D; and S;

e Haar-based decomposition for oxygen isotope records X
—d2f

W\&MNM N

= WWWMWWMWWWMMWMWW&W D
=35l
—42

“ WWMMWWM :

—56

—49

First Level Variance Decomposition: I

o recall that ‘energy’ in X is its squared norm || X||?

e because Pq is orthonormal, have PIT P1 = I and hence
[PIX]? = (PIX)TPIX = XTPPIX = XTX = [|X]?

e can conclude that [|X|[|? = ||[W||? + || V1]|? because

Pi1X = [\\};711] and hence ||731XH2 = ||W1||2 + ||V1||2

e leads to a decomposition of the sample variance for X:
1 N—-1 5 1

— X —X) = —|X|P-X
¥ X (=X = |

2 2
CTX:

1 2 1 2 —2
—||W —|Vq]|* = X
I Will” + SVl

159

First Level Variance Decomposition: II

e breaks up ?7%( into two pieces:
1. %HW1||27 attributable to changes in averages over scale 1

2. %HleQ - 727 attributable to averages over scale 2

e Haar-based example for oxygen isotope records

— first piece: %HV\HHQ =0.295
— second piece: %HleQ — X7 =2.909
— sample variance: &g( = 3.204

— changes on scale of A = 0.5 years account for 9% of 63(
(standardized scale 1 corresponds to physical scale A)
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Summary of First Level of Basic Algorithm

o transforms { Xy : t =0,..., N — 1} into 2 types of coefficients
e N/2 wavelet coefficients {W7 ;} associated with:

— W, a vector consisting of first N/2 elements of W

— changes on scale 1 and nominal frequencies %1 <|fl < %

— first level detail Dy

— Wi, an % x N matrix consisting of first g rows of W
e N/2 scaling coefficients {V] ;} associated with:

— V7, a vector of length N/2

— averages on scale 2 and nominal frequencies 0 < | f| < %

— first level smooth Sy

— Vi, an % x N matrix spanning same subspace as last N/2

rows of W

WMTSA: 86-87 I-61

Constructing Remaining DWT Coefficients: 1

e have regarded time series Xy as ‘one point” averages X¢(1) over
scale of 1

e first level of basic algorithm transforms X of length NV into

— N/2 wavelet coefficients W o< changes on a scale of 1

— N/2 scaling coefficients V| o averages of Xy on a scale of 2

e in essence basic algorithm takes length N series X related to
scale 1 averages and produces

— length N/2 series W7 associated with the same scale
— length N/2 series V7 related to averages on double the scale

WMTSA: Section 4.5 1-62

Constructing Remaining DWT Coefficients: II

e (): what if we now treat Vy in the same manner as X7
e basic algorithm will transform length N/2 series V7 into
— length N/4 series Wy associated with the same scale (2)
— length N/4 series Vy related to averages on twice the scale
e by definition, W4 contains the level 2 wavelet coefficients
e (): what if we treat Vo in the same way?
e basic algorithm will transform length N/4 series Vo into
— length N/8 series W3 associated with the same scale (4)
— length N/8 series V3 related to averages on twice the scale

e by definition, W3 contains the level 3 wavelet coefficients

WMTSA: Sections 4.5 and 4.6 163

Constructing Remaining DWT Coefficients: III

e continuing in this manner defines remaining subvectors of W
(recall that W = WX is the vector of DWT coefficients)

e at each level j, outputs W and V; from the basic algorithm
are each half the length of the input V;_;

e length of V; given by N/ 2J
e since N = 2‘], length of V jis 1, at which point we must stop

e J applications of the basic algorithm defines the remaining
subvectors Wo, ..., W7, V j of DWT coefficient vector W

e overall scheme is known as the ‘pyramid’ algorithm

WDMTSA: Section 4.6, 100-101 1-64




Scales Associated with DWT Coefficients

e jth level of algorithm transforms scale 27! averages into
— differences of averages on scale 27=1 ie., wavelet coefficients
Wi
— averages on scale 2 x 2071 =27 e, scaling coefficients V;
o7 = 2J=1 denotes scale associated with W,
—forj=1,...,J, takes on values 1,2,4, ..., N/4, N/2
o\ = 2 = 27; denotes scale associated with V;
— takes on values 2,4,8,..., N/2, N

WMTSA: 85 1-65

Matrix Description of Pyramid Algorithm: I

o form & x N matrix B; in same way as % x N matrix Wy

27 27—1
e when L = 4 and N/2/~1 = 16, have

[hihg O 00 0 00 0 0 0 0 0 0 hghy]
hs ho hy hg O 0 0 0 0 0 0 0 0 0O O O
0 0 hghohyhg 0 00O 0O 0O 0 0 0O
B — 0 0 0 0 hghyhihg O 000 0 0 0 0
J710 0 0 0 0 0 hghyhyhy O 00 0 0 0
00 0 0000 0hghhthg 0O 0 0 0
00 0 0O0O0O0O0 0 0 hghyghyhy OO
(00000000000 0 0 hghyhyhg]

e matrix gets us jth level wavelet coefficients via W; = B;V;_4

WMTSA: 94 1-66

Matrix Description of Pyramid Algorithm: II

N

e form % X QJL_ matrix Aj; in same way as 7 X N matrix V;
e when L = 4 and N/2/~! = 16, have
(91900 0000000000 0 g30]
362919 000000000000
00g3¢291900 000000000
A 0000 gemagno0000000
77100000 0g3g9.9000000
00000000Ggggg 0000
0000000000Ggagpauqg 00
000000000000 g3ga g%

e matrix gets us jth level scaling coefficients via V; = A;V;_4

WMTSA: 94 167

Matrix Description of Pyramid Algorithm: III

e if we define Vg = X and let j = 1, then
W, =B;V;_1 reduces to Wy =B Vy=BX=WX
because By has the same definition as Wy
e likewise, when j =1,
V,;=A;V,_q reduces to Vi = A41Vy= A4 X =VX

because A; has the same definition as Vy

WMTSA: 94 68




Formation of Submatrices of W: I

e using V; = A;V;_q repeatedly and Vi = A1 X, can write
Wj = BjVj—l
= BjAj_lvj'_Q
= BjA;_1A; 9V 3
= BjAj_lAj_Q A1 X = W;X,
where W is % X N submatrix of W responsible for W ;
o likewise, can get 1 x N submatrix V; responsible for V ;
Vy=A;Vy
= AjA;1V o
= AJAj1A 2V -3
=AjA Af 9 - AX=V;X
e V; is the last row of W, & all its elements are equal to 1/y/N

WMTSA: 94 69

Formation of Submatrices of W: II

e have now constructed all of DWT matrix;

Wy By

Wy ByAq

Ws B3 As Ay

Wy ByA3A2Ay

W = i = j
W BjAj 1A
Wy BjAy_1--- A
Vsl [AJA - A
WMTSA: 94 [-70

Examples of VV and its Partitioning: I

e N = 16 case for Haar DWT matrix W

0 *T Ryl
1 b 9 Ll
i [T )
2 N 10 “” W'_’
3 ‘T 11 L
Wi 4 . 12 frwaa™™?*
5 1 13 w2 Ws
7 *T 15 LISIIINSTINNNINT] V_l
I I I I I I I I
0 5 10 15 0 5 10 15
t t

e above agrees with qualitative description given previously

Examples of VW and its Partitioning: II

e N =16 case for D(4) DWT matrix W

R — 8 frrrerrassnayale
L [
lOﬂ‘-T'htr""“ 2
PR PP | || P N
VY ECPRRI ERPPRPRRES ] FE—L L
SRR SV T | P

= W N = O

Wi

5
]| PRSPPI V| S LTS VUV
Y S I
0 5 10 15 0 5 10 15
t t

e note: elements of last row equal to 1/4/N = 1/4, as claimed




Partial DWT: 1

e J repetitions of pyramid algorithm for X of length N = 2/
yields ‘complete’ DWT, i.e., W = WX

e can choose to stop at Jy < J repetitions, yielding a ‘partial’
DWT of level Jy:

[ W] By W,
Wo Bo Ay Wy

Wil X=| BjAj_1-A | X=|W;

BjAjp-1--A1 W,
LV | A A g—1 Al \SN

°Vj, is % x N, yielding Qﬂﬁ) coefficients for scale A j, = 270

WMTSA: 104 73

Partial DWT: 11

e only requires N to be integer multiple of 20
e partial DW'T more common than complete DWT
e choice of Jj is application dependent

e multiresolution analysis for partial DW'T:
Jo
X = Z Dj+Sy
j=1
S, represents averages on scale A j, = 20 (includes X)

e analysis of variance for partial DW'T:
Jo

1 2, 9
oy = NZHW | —||VJ0H
7=1

WMTSA: 104 I-74

Example of Jy =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

L Vv,
‘ |‘\‘ ‘ \“\\‘\‘ W,
| ‘\“M““““ W,
ool ‘\\‘\‘H“\‘ el g \“M\”u“\‘ \““ ‘\ W2
i Ay, ““H H“‘“‘, W,
—44.2
_sasl W/MWMWV\JWW

1800 1850 1900 1950 2000
year

WMTSA: 104 75

Example of MRA from Jy =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

L S,
i D,
I D,
i D,
i D,
—44.2 |
—49.0 - X
—53.8 i L L L N
1800 1850 1900 1950 2000
year
WMTSA: 104 I-76




Example of Variance Decomposition

e decomposition of sample variance from Jy = 4 partial DWT
N—-1 4

=y 2 (X=X = S IW P+ Vil - X
=0 j=1
e Haar-based example for oxygen isotope records

— 0.5 year changes: %leHQ =0.295 (= 9.2% of 6%)
— 1.0 years changes: %HWQHQ = 0.464 (= 14.5%)

— 2.0 years changes: %HWgHQ = 0.652 (= 20.4%)

— 4.0 years changes: %HWZLHQ = 0.846 (= 26.4%)

— 8.0 years averages: %HV;LHZ Xtz 0.047 (=29.5%)

— sample variance: (7%( = 3.204

WAITSA: 104 L7

Haar Equivalent Wavelet & Scaling Filters

{} L=
{hau} TTM Ly=14
{hau} TTTTM L=
{hagy Ty Li=16
{o} 1 L=2
{921} m Ly—4
(g5} T Ly—8
(g4} - Li—16

o L; =2 is width of {h;} and {g;}
e note: convenient to define {hy ;} to be same as {h;}

78

D(4) Equivalent Wavelet & Scaling Filters

{my L=1

{ha} -weallge Ly =10
{hg} s "’TT'.%. . Ly=22
{hys} s, _— Ly = 46
{9} t, L=4

L Ly=10
{g5.} L1111, 28 Ly = 22
{1} w1 ... Ly = 46

e L; dictated by general formula L; = (27 —1)(L —1) + 1,
but can argue that effective width is 27 (same as Haar L;)

WMTSA: 98 79

LA(8) Equivalent Wavelet & Scaling Filters

{h} el L=
TP — Ly=22
{hs1} --h'm*'qa- L3 =50
{hys} __“M_.—‘rTTTTT-r._“m“__ L, = 106
{oi} t, L=38
{g2s} el Ly =22
{gs:} ot e, Ly = 50
{gs1} wont T 000 Li= 106
WALTSA: 08 180




Squared Gain Functions for Filters

e squared gain functions give us frequency domain properties:
Hi(f) = [Hi(DIP and Gj(f) = 1G;(H)I
e example: squared gain functions for LA(8) Jy = 4 partial DWT

oLl Gi0)
16

Olim | | ] H4()
8
0’7 m | | ! J H5<)
4
0’7 m I I ] H2<)
2
N o 1O
0 1 1 3 1 5 3 i 1
16 8 16 4 16 8 16 2
f
WMTSA: 99 181

Maximal Overlap Discrete Wavelet Transform

e abbreviation is MODWT (pronounced ‘mod WT")

e transforms very similar to the MODWT have been studied in
the literature under the following names:

— undecimated DWT (or nondecimated DWT)
— stationary DWT

— translation invariant DW'T

— time invariant DW'T

— redundant DWT

e also related to notions of ‘wavelet frames” and ‘cycle spinning’

e basic idea: use values removed from DWT by downsampling

WMTSA: 159 1-82

Quick Comparison of the MODWT to the DWT

e unlike the DWT, MODWT is not orthonormal (in fact MODWT
is highly redundant)

e unlike the DWT, MODWT is defined naturally for all samples
sizes (i.e., N need not be a multiple of a power of two)

e similar to the DWT, can form multiresolution analyses (MRAs)
using MODWT with certain additional desirable features; e.g.,
unlike the DWT, MODWT-based MRA has details and smooths
that shift along with X (if X has detail D;, then 7"X has

detail Tmﬁj, where 7" circularly shifts X by m units)

e similar to the DWT, an analysis of variance (ANOVA) can be
based on MODWT wavelet coefficients

e unlike the DWT, MODWT discrete wavelet power spectrum
same for X and its circular shifts 7"X

WMTSA: 159-160 1-83

Definition of MODWT Coefficients: 1

e define MODWT filters {ﬁﬂ} and {g;,;} by renormalizing the
DWT filters:

- . ) 1o
hjp=hja/?? and gjy = g/
e level j MODWT wavelet and scaling coefficients are defined to
be output obtaining by filtering X with {h;;} and {g;}:
X — {iljl} — W] and X — {gj,l} — {}]
e compare the above to its DWT equivalent:
X — {hﬂ} — W and X — {gj,l} — V;
127 127
e level Jy MODWT consists of Jy + 1 vectors, namely,
W1, Wo,..., Wy and V,
each of which has length N

WMTSA: 169 -84




Definition of MODWT Coefficients: II

e MODWT of level Jj has (Jy+1)N coefficients, whereas DWT
has N coefficients for any given .Jj
e whereas DW'T of level Jj requires N to be integer multiple of
270, MODWT of level Jy is well-defined for any sample size N
e when N is divisible by 270, we can write
Li—1 Li—1
Wj’t - Z hjleQJ(t+1)—1—l mod N & Wjﬂf - Z hj'JXt—l mod N
=0 =0
and we have the relationship

_oj/2wr . : ‘e __oJy/2
W= 93/ Wj,QJ(t+1)—1 &, likewise, V4 =2 0/ VJ0,2J0(t+1)71

(here ﬁ//j,t & 17(]07,5 denote the tth elements of Wj &V Jo)

WMTSA: 96-97, 169, 203 -85

Properties of the MODWT

e as was true with the DW'T, we can use the MODW'T to obtain
— a scale-based additive decomposition (MRA):
Jo
X= Z Dj+Sy
j=1
— a scale-based energy decomposition (basis for ANOVA):
Jo
2 W .12 \7 2
X = IWSIP + [Vl
j=1
e in addition, the MODW'T can be computed efficiently via a
pyramid algorithm

WMTSA: 159-160 [-86

Example of Jy =4 LA(8) MODWT

e oxygen isotope records X from Antarctic ice core

T_'ds\?z;

r M\MW\A/\/\/\/ T753W4
T 2
i WMMWVWMWWMWA/\M}WNWMM T-1W,

WMMMMWWWVMWWMW 774\/\7\7]

—44271

—53.8

1800 1850

L 1 L L L
1900
year

L L L L L |
1950 2000

187

Relationship Between MODWT and DWT

e bottom plot shows W from DWT after circular shift 72 to
align coefficients properly in time

e top plot shows W4 from MODWT and subsamples that, upon
rescaling, yield Wy via Wy ; = 4W4,16(t 1)1

ol
0 \/m\y v e A \/NA\ a T-%W,
0 ‘ - ‘ . . ‘ | ‘ 773W4
12 .
1800 1850 1900 1950 2000

year
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Example of Jy =4 LA(8) MODWT MRA

e oxygen isotope records X from Antarctic ice core

| ! T T v Doy M D)
AR S ettt A b AR I | A ML L ML | Dl

—442[

—53.8

L L L L 1 L L L L L L
1800 1850 1900

L L L L L |
1950 2000

year

-89

Example of Variance Decomposition

e decomposition of sample variance from MODWT

= B ST
ox =5 2. (Xe=X)" =3 SlIW,IP + Vil = X
=0 j=1
e LA(8)-based example for oxygen isotope records
— 0.5 year changes: %H\’K/}HQ =0.145 (= 4.5% 0f6§()
— 1.0 years changes: %”WQHQ = 0.500 (= 15.6%)
— 2.0 years changes: %H{?v\/'gﬂ2 = 0.751 (= 23.4%)
— 4.0 years changes: %HVN\QH2 = 0.839 (= 26.2%)
— 8.0 years averages: %H\NQH2 ~ X% =0.969 (=30.2%)
— sample variance: &g( = 3.204

1-90

Summary of Key Points about the DWT: I

o the DWT W is orthonormal, i.e., satisfies WIW = T N

e construction of W starts with a wavelet filter {h;} of even
length L that by definition

1. sums to zero; i.e., > ; hy =0;
2. has unit energy; i.c., ) hl2 =1; and
3. is orthogonal to its even shifts; i.e., >, hthji0, =0
e 2 and 3 together called orthonormality property
o wavelet filter defines a scaling filter via g; = (—=1)"hy 1

e scaling filter satisfies the orthonormality property, but sums to
v/2 and is also orthogonal to {f;}; i.e., > gihyio, =0

e while {h;} is a high-pass filter, {g;} is a low-pass filter

WMTSA: 150-156 91

Summary of Key Points about the DWT: I1

e {h;} and {g;} work in tandem to split time series X into
— wavelet coefficients W (related to changes in averages on a
unit scale) and
— scaling coefficients V' (related to averages on a scale of 2)

e {h;} and {g;} are then applied to V7, yielding

— wavelet coefficients Wy (related to changes in averages on a
scale of 2) and
— scaling coefficients Vg (related to averages on a scale of 4)
e continuing beyond these first 2 levels, scaling coefficients V;_1

at level j — 1 are transformed into wavelet and scaling coeffi-
cients W and V; of scales 7; = 27—1 and Aj= 2J

WMTSA: 150-156 192




Summary of Key Points about the DWT: III

e after Jy repetitions, this ‘pyramid’ algorithm transforms time
series X whose length N is an integer multiple of 270 into DWT

coefficients W1, Wy, ..., W jand V j, (sizes of vectors are

0
%. %, e % and %, for a total of N coefficients in all)
' 270 270

e DWT coefficients lead to two basic decompositions
e first decomposition is additive and is known as a multiresolution
analysis (MRA), in which X is reexpressed as
Jo
X = Z Dj + SQ Jo»
j=1
where Dj is a time series reflecting variations in X on scale 75,
while S is a series reflecting its A 7, averages

WMTSA: 150-156 1-93

Summary of Key Points about the DWT: IV

e second decomposition reexpresses the energy (squared norm)
of X on a scale by scale basis, i.e.,

Jo

2 2 2
X =D WP+ IV 17
=1

leading to an analysis of the sample variance of X:
1 N-1 5
) -
0X =N > (% -X)
t=0
. 1
2 2 ¥
= = IW I VP - X
7=1

2

WMTSA: 150-156 1-94

Summary of Key Points about the MODWT

e similar to the DWT, the MODWT offers

— a scale-based multiresolution analysis

— a scale-based analysis of the sample variance

— a pyramid algorithm for computing the transform efficiently

e unlike the DWT, the MODWT is

— defined for all sample sizes (no ‘power of 2’ restrictions)

— unaffected by circular shifts to X in that coefficients, details
and smooths shift along with X

— highly redundant in that a level Jy transform consists of
(Jo + 1)N values rather than just N

e MODWT can eliminate ‘alignment’ artifacts, but its redundan-
cies are problematic for some uses

WMTSA: 159-160 1-95




