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Overview of Talk

• background on surrogate data/bootstrapping

(current methodology not ideal)

• will look at wavelet-based methodology

– basics of discrete wavelet transform (DWT)

– DWT as a time series decorrelator

• works for ‘fractal’ time series; can fail on others

• generalization: discrete wavelet packet transforms

– adaptive selection of decorrelating transform

(‘top down’ via white noise tests)

• results for sample autocorrelation



Background: I

• Theiler et al. (1992): method of surrogate data

(useful for identifying nonlinear time series)

– let X be time series of interest

– assume null hypothesis H0: linear & stationary

– given X, generate surrogates (simulated series

with properties dictated by H0)

– compute test statistic for X and its surrogates

– reject H0 if test for X in tails of histogram

• ‘surrogate data’ basically same as ‘bootstrapping’

– originally devised for IID data Z

(independent and identically distributed)

– let T (Z) be statistic with unknown distribution

– create Zi by sampling with replacement from Z

– use histogram of T (Z0), . . . , T (ZM−1) as stand-

in for distribution of T (Z)

• time series problematic because of correlation



Background: II

• to generate surrogates, Theiler et al. proposed:

1. compute discrete Fourier transform (DFT)

X̃k ≡
N−1∑
t=0

Xte
−i2πkt/N ;

randomize phases; compute inverse DFT

(critique: fails if T depends on |X̃k|)
2. do 1 with windowed series htXt

(critique: spurious low frequency terms)

3. rescale X to be Gaussian; do 1; undo rescaling

(critique: fails if T depends on histogram)

• Davison & Hinkley, 1998, Chapter 8, discusses

bootstrapping in context of time series analysis

1. fit, e.g., Xt = φXt−1+εt & bootstrap from model

(critique: depends critically on choice of model)

2. block bootstrap

(critique: fails for ‘fractal’ time series)

• more work needed on surrogate generation



Overview of DWT

• let X = [X0, X1, . . . , XN−1]T be observed time series

(for convenience, assume N integer multiple of 2J0)

• let W be N ×N orthonormal DWT matrix

• W =WX is vector of DWT coefficients

• orthonormality says X =WTW, so X⇔W

• can partition W as follows:

W =



W1
...

WJ0

VJ0



• Wj contains Nj = N/2j wavelet coefficients

– related to changes of averages at scale τj = 2j−1

(τj is jth ‘dyadic’ scale)

– related to times spaced 2j units apart

• VJ0 contains NJ0 = N/2J0 scaling coefficients

– related to averages at scale λJ0 = 2J0

– related to times spaced 2J0 units apart



DWT in Terms of Filters

• filter X0, X1, . . . , XN−1 to obtain

2j/2W̃j,t ≡
Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N − 1

where hj,l is jth level wavelet filter

– note: circular filtering

• subsample to obtain wavelet coefficients:

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• Figs. 1 & 2: Haar, D(4), C(6) & LA(8) wavelet filters

• jth wavelet filter is band-pass with pass-band [ 1
2j+1 ,

1
2j

]

• note: jth scale related to interval of frequencies

• similarly, scaling filters yield VJ0

• Figs. 3 & 4: Haar, D(4), C(6) & LA(8) scaling filters

• J0th scaling filter is low-pass with pass-band [0, 1
2J0+1 ]



Example: DWT of FD Process

• Xt called fractional difference (FD) process if it has

a spectral density function (SDF) given by

SX(f ) =
σ2

|2 sin(πf )|2δ ,

where σ2 > 0 and −1
2 ≤ δ < 1

2

• note: for small f , have SX(f ) ≈ C/|f |2δ;
i.e., ‘1/f type process’ or ‘stochastic fractal’

• if δ = 0, FD process is white noise

• if 0 < δ < 1
2, stationary with ‘long memory’

• can extend definition to δ ≥ 1
2

– nonstationary 1/f type process

– also called FARIMA(0,δ,0) process

• Fig. 5: LA(8) DWT of FD process with δ = 0.4



Wavelets as Whitening Filters

• since FD process is stationary, Wj is also

(ignoring terms influenced by circularity)

• Fig. 6: SDFs Sj(·) for each Wj

• DWT acts as whitening filter for FD series because

SDFs for Wj are ≈ flat over pass-bands [ 1
2j+1 ,

1
2j

]

• Figs. 7 & 8: auto- and cross-correlations

• can regard W1, . . . ,WJ0 as ≈ uncorrelated

(but N/2J0 scaling coefficients are NOT)

• since X⇔W, can write T (X) = T (W)

• if Gaussian, close to independently distributed

– ≈ IID within given Wj, but not between

(Wj & Wj′ can have different variances)

– bootstrap OK with this departure from IID



DWT-Based Bootstrapping: I

• simple example: lag 1 autocorrelation estimate

T (X) = r̂1 ≡
∑N−2
t=0 (Xt −X)(Xt+1 −X)∑N−1

t=0 (Xt −X)2

for FD process

• very simple – but challenging – statistic:

– r̂1 is function of |X̃k|2
(hence DFT + phase randomization fails)

– block bootstrap etc tend to fail for FD processes

• to get standard error of r̂1,

– compute DWT W of X

– sample with replacement from Wj to form W
(b)
j

(do same with VJ0)

– synthesize X(b) using W
(b)
j ’s & V

(b)
J0

(see Fig. 9)

– compute r̂
(b)
1 for X(b)

– repeat until computer gets tired

– use standard error of r̂
(b)
1 ’s for X(b)’s to assess

standard error of r̂1 for X



DWT-Based Bootstrapping: II

• Monte Carlo study

– LA(8) DWT

– FD process with δ = 0.45

– 1024 simulated FD series

– 64 DWT-based bootstraps from each series

– FDP with d = 0.45

• comparison of standard errors

N block DWT true

128 0.077 0.099 0.107

1024 0.034 0.047 0.053



WaveStrapping: I

• key to scheme is decorrelation property

– DWT well suited for FD processes,

but can fail for other processes

– Fig. 10 considers Xt = φXt−1 + εt:

DWT OK for φ = 0.9, but not φ = −0.9

• need different partitioning of [0, 1
2]

• Fig. 11: discrete wavelet packet transform (DWPT)

• jth DWPT consists of Wj,n, n = 0, . . . , 2j − 1

• {Wj,n}, j = 0, . . . , J0, form DWP table

• can extract many transforms from DWP table

– Fig. 12: DWT is special case

– Fig. 13: another special case

• idea: adaptively select transform from DWP table



WaveStrapping: II

• given Wj,n, test for white noise using, e.g.,

– portmanteau test on sample autocorrelations

– cumulative periodogram test

• if test fails to reject, keep Wj,n

• if test rejects, split Wn,j into Wj+1,2n & Wj+1,2n+1,

and test both for white noise

• yields ‘top down’ selection from DWT table

• once transform selected, bootstrap as in DWT case

• adaptive procedure called ‘WaveStrapping’



WaveStrapping: III

• Monte Carlo study: as before, but now also with

– white noise (WN) process εt

– autoregressive (AR) process: Xt = 0.9Xt−1 + εt

– moving average (MA) process: Xt = εt + εt−1

• comparison of standard errors

WaveStrap

process N block DWT port pgrm true

WN 128 0.081 0.083 0.086 0.087 0.087

1024 0.030 0.032 0.032 0.031 0.031

AR(1) 128 0.054 0.055 0.051 0.054 0.048

1024 0.015 0.016 0.015 0.015 0.014

MA(1) 128 0.065 0.070 0.068 0.066 0.063

1024 0.022 0.026 0.024 0.024 0.022

FD 128 0.077 0.099 0.088 0.096 0.107

1024 0.034 0.047 0.045 0.047 0.053



Future Research

• ‘bottom up’ selection with ‘best basis’ algorithm

(algorithm tends to pick decorrelating transforms)

• combine with parametric bootstrap:

model within scale correlation as AR(1)

• combine with tests for nonlinearity

• test on physiological time series


