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Figure 342. LA(8) DWT coefficients for simulated FD(0.4) time series and sample ACSs.
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Figure 344. Sample variances of LA(8) wavelet coefficients from Figure 342 for – from right
to left – levels j = 1, . . . , 7 (circles) along with true FD(0.4) SDF evaluated at the center

frequency 1/2j+ 1
2 of the octave bands [ 1

2j+1 , 1
2j ] (thick curve).
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Figure 346a. ACSs at τ = 1, . . . , 4 for Haar, D(4) and LA(8) wavelet coefficients Wj,t,

j = 1, . . . , 4, of an FD(0.4) process. The ACS values are plotted as deviations from zero (some
are not visible because they are so close to zero).
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Figure 346b. ACS for FD process with δ = 0.4 out to lag τ = 64.
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Figure 347a. Correlation between the Haar wavelet coefficients Wj,t and Wj′,t′ formed from

an FD(0.4) process and for levels satisfying 1 ≤ j < j′ ≤ 4. By setting t = 2|j
′−j|−1 and

t′ = t + τ with τ = −8, . . . , 8, we capture two coefficients exhibiting the maximum absolute
correlation over all possible combinations of t and t′.
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Figure 347b. As in Figure 347a, but now using the LA(8) DWT and with t set as per
Equation (346).
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Figure 349. SDFs for an FD(0.4) process (left-hand plot) and for nonboundary LA(8) wavelet
coefficients in W1, W2, W3 and W4 (right-hand). The vertical axis is in units of decibels (i.e.,
we plot log10(SX(f)) versus f). The vertical lines in the left-hand plot denote the nominal
pass-bands for the four Wj .
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Figure 350. Correlation matrix of Haar wavelet coefficients for a portion of length N = 32
from an FD process with δ = 0.4.



•
•

• • •
• W1

W2

W3

Figure 351a. As in Figure 350, but now using the D(4) DWT.
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Figure 351b. As in Figure 350, but now using the LA(8) DWT.
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Figure 352. SDFs for AR(1) processes with φ = 0.9 (top left-hand plot) and −0.9 (bottom
left-hand) and for corresponding nonboundary LA(8) wavelet coefficients in W1 to W4 (right-
hand plots). The vertical axes are in decibels, and the vertical lines in the left-hand plots
delineate the nominal pass-bands for the four Wj .
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Figure 353. ACSs at τ = 1, . . . , 4 for LA(8) wavelet coefficients Wj,t, j = 1, . . . , 4, of an

AR(1) process with φ = 0.9 and −0.9 (top and bottom rows, respectively).
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Figure 356. Diagonal elements ΣY,m,m+τ and ΣX,m,m+τ , m = 0, . . . , N − 1 − τ , of the

covariance matrices ΣY and ΣX (thick jagged curves and thin horizontal lines, respectively)

for sample size N = 64 from an FD(0.4) process with σ2
ε = 1 and with ΣY constructed using

an LA(8) DWT. Three diagonals are plotted for each covariance matrix, namely, the main
diagonal (τ = 0) and the first two off-diagonals (τ = 1 and 2). Whereas ΣX exhibits the
Toeplitz structure required for a stationary process, its approximation ΣY does not.
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Figure 357. True ACVS (thin curves) and wavelet-based approximate ACVSs (thick) for
an FD(0.4) process. The approximating ACVSs are based on an LA(8) DWT in which we
generate a series of length M and then extract a series of length N = 64. As M goes from N
to 4N , the approximate ACVS gets closer to the true ACVS.
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Figure 358. LA(8) wavelet-based simulation of a series of length N = 1024 from an FD

process with zero mean and with parameters δ = 0.4 and σ2
ε = 1.0.



    

   

   

   

   

 

95%

s̄(u)
τ

5%

5.0

2.5

0.0

−2.5
0 16 32 48 64

t

Figure 359. Estimated ACVSs averaged over 10 000 realizations generated via the Davies–
Harte method (thin curve, middle of the plot) and the LA(8) wavelet-based method (thick
curve) for an FD(0.4) process. The corresponding lower and upper pairs of curves indicate the
5% and 95% percentage points of the empirical distribution of the 10 000 simulations.
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Figure 360. LA(8) wavelet-based simulation of a series of length N = 1024 from process with
time varying statistical properties.



MLE

δ Haar D(4) LA(8) exact

0.25 mean 0.2184 0.2293 0.2328 0.2374
bias −0.0316 −0.0207 −0.0172 −0.0126
SD 0.0713 0.0705 0.0710 0.0673

RMSE 0.0780 0.0735 0.0731 0.0685
0.4 mean 0.3614 0.3727 0.3768 0.3797

bias −0.0386 −0.0273 −0.0232 −0.0203
SD 0.0675 0.0652 0.0640 0.0604

RMSE 0.0778 0.0707 0.0681 0.0637

Table 363. Sample mean, bias, standard deviation and root mean square error of 1024

wavelet-based approximate MLEs δ̃(s) of the parameter δ based on the likelihood function of
Equation (362a) using Haar, D(4) and LA(8) wavelet filters. All 1024 time series were of
length N = 128 and were simulated using the Davies–Harte method. Corresponding statistics

for exact MLEs δ̂ are given in the final column.



MLE

δ Haar D(4) LA(8) exact

0.25 mean 0.2256 0.2363 0.2402 0.2443
bias −0.0244 −0.0137 −0.0098 −0.0057
SD 0.0505 0.0495 0.0502 0.0479

RMSE 0.0561 0.0514 0.0511 0.0483
0.4 mean 0.3710 0.3832 0.3886 0.3900

bias −0.0290 −0.0168 −0.0114 −0.0100
SD 0.0488 0.0478 0.0465 0.0437

RMSE 0.0567 0.0506 0.0479 0.0448

Table 364. As in Table 363, but now with N = 256.



MLE

δ Haar D(4) LA(8) exact

0.25 mean 0.2058 0.2182 0.2227 0.2274
bias −0.0442 −0.0318 −0.0273 −0.0226
SD 0.0559 0.0551 0.0557 0.0528

RMSE 0.0712 0.0636 0.0620 0.0575
0.4 mean 0.3449 0.3602 0.3672 0.3687

bias −0.0551 −0.0398 −0.0328 −0.0313
SD 0.0550 0.0538 0.0525 0.0494

RMSE 0.0778 0.0669 0.0619 0.0585

Table 366. As in Table 364, but now with the process mean assumed unknown and hence

estimated using the sample mean X.
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Figure 369. Linear and quadratic trends T (top plots), below which are shown their partial

DWT coefficients W = [WT
1 , VT

1 ]T based on the Haar, D(4) and D(6) wavelet filters (second
to fourth rows, respectively). The vertical dotted lines delineate the subvectors W1 and V1.
Boundary wavelet and scaling coefficients are indicated by circles (there are none for the Haar;
one each in W1 and V1 for the D(4); and two in each of the subvectors for the D(6)). Because
the Haar wavelet does not reduce either linear or quadratic polynomials to zero, its wavelet
coefficients are all nonzero; on the other hand, the D(6) wavelet reduces both polynomials to
zero, so its six nonboundary wavelet coefficients are zero in both W1. The D(4) wavelet can
handle a linear polynomial, but not a quadratic, which is why its seven nonboundary wavelet
coefficients are zero for the former and nonzero for the latter. (For the record, the linear and

quadratic trends are defined by Tt = 0.9 · (t − 7) and Tt = 0.2 · (t − 7)2 − 6. This illustration
is due to W. Constantine, MathSoft, Seattle.)



MLE

δ Haar D(4) LA(8) exact

0.4 mean 0.3670 0.3762 0.3792 0.3900
bias −0.0330 −0.0238 −0.0208 −0.0100
SD 0.0588 0.0732 0.0943 0.0437

RMSE 0.0674 0.0769 0.0966 0.0448
σδ 0.0530 0.0673 0.0869

0.75 mean 0.7230 0.7277 0.7346 0.7677
bias −0.0270 −0.0223 −0.0154 0.0177
SD 0.0783 0.0878 0.0863 0.0272

RMSE 0.0829 0.0906 0.0877 0.0325
σδ 0.0526 0.0665 0.0857

Table 372. As in Table 364, but now using the likelihood function of Equation (371a) to

define the wavelet-based approximate MLE δ̃(s/ns) for δ (the δ = 0.4 results for the exact MLE
in the final column are replicated from Table 364). The nature of the term σδ is explained in
the text.
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Figure 375. Approximations Cj/2j (computed from Equation (343b) via numerical integra-

tion) to wavelet variances ν2
X(τj) versus scales τj , j = 1, . . . , 8, for FD processes with δ = 0.4

(lower circles) and 0.75 (upper). See the text for an explanation of the portion of the plot
between these sets of circles.



WLSE MLE

δ Haar D(4) LA(8) exact

0.4 mean 0.3925 0.4006 0.4044 0.3900
bias −0.0075 0.0006 0.0044 −0.0100
SD 0.0715 0.0886 0.1185 0.0437

RMSE 0.0719 0.0886 0.1186 0.0448
0.75 mean 0.7398 0.7443 0.7435 0.7677

bias −0.0102 −0.0057 −0.0065 0.0177
SD 0.0779 0.0877 0.1196 0.0272

RMSE 0.0786 0.0879 0.1198 0.0325
√

var {β̂(wls)} 0.0891 0.1145 0.1552

Table 377. As in Table 372, but now using the wavelet-based WLSE δ̂(wls) (the final column
is replicated from Table 372). The WLSEs are based on the unbiased MODWT estimators

ν̂2
X(τj) of the wavelet variance, which are presumed to have EDOFs ηj = max {Mj/2j, 1}.

We set J1 = 2 for all three wavelets. The results reported in the table are based on 1024
simulated time series of sample size N = 256.



WLSE MLE

δ Haar D(4) LA(8) exact

0.4 mean 0.3881 0.3994 0.4000 0.3900
bias −0.0119 −0.0006 −0.0000 −0.0100
SD 0.0669 0.0700 0.0728 0.0437

RMSE 0.0680 0.0700 0.0728 0.0448
0.75 mean 0.7278 0.7432 0.7442 0.7677

bias −0.0222 −0.0068 −0.0058 0.0177
SD 0.0739 0.0718 0.0726 0.0272

RMSE 0.0772 0.0721 0.0728 0.0325

Table 378. As in Table 377, but now using an WLSE δ̃(wls) based upon a biased MODWT
estimator of the wavelet variance along with reflection boundary conditions.
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Figure 383. Wavelet-based decomposition of atomic clock fractional frequency deviates Y

into an estimated trend T̂ and residuals Û about the trend. Here we used an LA(8) partial

DWT of level J0 = 7. Note that T̂ has much more structure than a low order polynomial and
in fact resembles the output from a variable bandwidth smoother: it is quite smooth near the
middle of the series, but then becomes rougher in appearance toward the end points.



Haar D(4) LA(8)

δ̃(s/ns) 0.5031 0.3943 0.3921
σδ̃(s/ns) 0.0252 0.0282 0.0318

σ̃2
ε 0.3057 0.2838 0.2740

δ̂(wls) 0.4449 0.3812 0.3460√
var {δ̂(wls)} 0.0374 0.0418 0.0479

J0 10 8 7

Table 384. Parameter estimation for the atomic fractional frequency deviates (see text for
details).
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Figure 384. D(4) MODWT wavelet variance estimates for atomic clock fractional frequency
deviates (re-expressed as spectral levels Cj), along with spectral levels deduced from MLEs of

δ and σ2
ε (thick curve). The two shorter thin curves are discussed in the text.
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Figure 386. Reduced log likelihood functions for the FD parameter δ computed using the
final 512 observations of the Nile River time series (see Figure 192). The thick curve is based

on the LA(8) wavelet and attains its minimum at the estimate δ̃(s) .
= 0.4532, while the thin

curve is for the exact method and reaches its minimum at δ̂
.
= 0.4452.
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Figure 387. Variance of wavelet coefficients computed via LA(8) MLEs δ̃(s) and σ̃2
ε(δ̃(s))

(solid curve) as compared to sample variances of LA(8) wavelet coefficients (circles).

critical levels

τj M ′
j D 10% 5% 1%

1 year 331 0.1559 0.0945 0.1051 0.1262
2 years 165 0.1754 0.1320 0.1469 0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
8 years 41 0.2313 0.2572 0.2864 0.3436

Table 387. Results of testing Nile River minima for homogeneity of variance using the Haar
wavelet filter critical values determined by computer simulations (Whitcher et al., 2000a).
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Figure 388. The Nile River minima (top plot) along with ∆−
k

versus k for scales τ1 and τ2

(middle and bottom plots, respectively). The thick vertical lines denote the year 715.


