
p

η 0.005 0.025 0.05 0.95 0.975 0.995
1 0.00004 0.0010 0.0039 3.8415 5.0239 7.8794

1.5 0.0015 0.0131 0.0332 4.9802 6.2758 9.3310
2 0.0100 0.0506 0.1026 5.9915 7.3778 10.5966

2.5 0.0321 0.1186 0.2108 6.9281 8.3923 11.7538
3 0.0717 0.2158 0.3518 7.8147 9.3484 12.8382

3.5 0.1301 0.3389 0.5201 8.6651 10.2621 13.8696
4 0.2070 0.4844 0.7107 9.4877 11.1433 14.8603

4.5 0.3013 0.6494 0.9201 10.2882 11.9985 15.8183
5 0.4117 0.8312 1.1455 11.0705 12.8325 16.7496

5.5 0.5370 1.0278 1.3845 11.8376 13.6486 17.6583
6 0.6757 1.2373 1.6354 12.5916 14.4494 18.5476

6.5 0.8268 1.4584 1.8967 13.3343 15.2369 19.4201
7 0.9893 1.6899 2.1673 14.0671 16.0128 20.2777

7.5 1.1621 1.9306 2.4463 14.7912 16.7783 21.1222
Φ−1(p) −2.5758 −1.9600 −1.6449 1.6449 1.9600 2.5758

Table 263. Percentage points Qη(p) for χ2
η distribution for η = 1 to 7.5 in steps of 0.5. The

bottom row gives percentage points Φ−1(p) for the standard Gaussian distribution.



c = 1 c = 2 c = 3 c = 4
r = 0 2.5216281 −4.7715359 7.9199915 −11.9769211
r = 1 16.0778828 −20.6343346 25.0531521 −28.8738136
r = 2 31.8046265 −34.0071373 34.7700272 −34.3151321
r = 3 32.7861099 −30.2861233 26.7109356 −22.8838310
r = 4 18.7432098 −14.5717688 10.7177744 −7.5322194
r = 5 4.7226319 −2.6807923 1.3391306 −0.5167125

Table 272. Coefficients {φ24,n : n = 1, . . . , 24} for AR(24) process (Gao, 1997). The coeffi-
cient in row r and column c is φ24,4r+c. These coefficients are available on the Web site for

this book (see page xiv).
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Figure 273. Periodogram (thin jagged curve) and true SDF (thick smooth) for a time series of
length N = 2048 that is a realization of an AR(24) process (see Table 272 for the coefficients
defining this process). Both the periodogram and true SDF are plotted on a decibel (dB)
scale. Leakage is evident here in the periodogram at high frequencies, where the bias becomes
as large as 40 dB (i.e., four orders of magnitude).



     

 

     

 

a0,t a1,t

a2,t a3,t

0 1024 0 1024
t t

Figure 274. Sine tapers {an,t} of orders n = 0, 1, 2 and 3 for N = 1024.



 

60

40

20

0

−20

−40

−60
0.0 0.1 0.2 0.3 0.4 0.5

f

Figure 275. Multitaper SDF estimate Ŝ
(mt)

X
(·) (thin jagged curve) and true SDF (thick

smooth) for a simulated AR(24) time series of length N = 2048 (the corresponding peri-
odogram is shown in Figure 273). The multitaper estimate is based on K = 10 sine tapers.

Both Ŝ
(mt)

X
(·) and the true SDF are plotted on a decibel scale. The width of the crisscross in

the left-hand portion of the plot gives the bandwidth of Ŝ
(mt)

X
(·) (i.e., K+1

(N+1)

.
= 0.0054), while

its height gives the length of a 95% confidence interval for a given 10 · log10(SX(f)).
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Figure 276. PDFs for log (χ2
η) RVs (thin curves) compared to Gaussian PDFs (thick curves)

having the same means and variances. The degrees of freedom η are, from left to right, 10,
12 and 16 (these would be the degrees of freedom associated with a multitaper SDF estimator

Ŝ
(mt)

X
(·) formed from, respectively, K = 5, 6 and 8 data tapers). The vertical lines indicate

the means for the log (χ2
η) RVs – from left to right, these are ψ(5) + log (2)

.
= 2.199, ψ(6) +

log (2)
.
= 2.399 and ψ(8)+log (2)

.
= 2.709. The square roots of the corresponding variances are,

respectively,
√
ψ′(5) .

= 0.470,
√
ψ′(6) .

= 0.426 and
√
ψ′(8) .

= 0.365. (Exercise [7.1] concerns

the derivation of the log (χ2
η) PDF.)
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Figure 277. The autocovariance s̃η(ν) versus ν for N = 2048 and K = 5, 6 and 8 sine tapers.

Each vertical line shows the bandwidth K+1
N+1 of the associated multitaper SDF estimator.
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Figure 278. Multitaper SDF estimate Ŝ
(mt)

X
(·) (in decibels) of the solar physics time series

using K = 10 sine tapers (this series of N = 4096 values is plotted in Figures 222 and 235).
The vertical dotted lines partition the frequency interval [0, 12 cycles/day] into 16 subintervals,
the same as would be achieved by a level j = 4 DWPT (see Figures 220) or MODWPT
(Figure 236). The width of the crisscross in the lower left-hand corner of the plot gives the

physical bandwidth of Ŝ
(mt)

X
(·) (i.e., K+1

(N+1) ∆t

.
= 0.0644 cycles/day – here ∆t = 1/24 days),

while its height gives the length of a 95% confidence interval for a given 10 · log10(SX(f)).
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Figure 282. SDFs for FGN, PPL and FD processes (top to bottom rows, respectively) on both
linear/log and log/log axes (left- and right-hand columns, respectively). Each SDF SX(·) is
normalized such that SX(0.1) = 1. The table below gives the parameter values for the various
plotted curves.

process thick solid dotted dashed thin solid

FGN H = 0.55 H = 0.75 H = 0.90 H = 0.95
PPL α = −0.1 α = −0.5 α = −0.8 α = −0.9
FD δ = 0.05 δ = 0.25 δ = 0.40 δ = 0.45
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Figure 283. Simulated realizations of FGN, PPL and FD processes. The thick (thin) solid
curves in Figure 282 show the SDFs for the top (bottom) three series – these SDFs differ
markedly only at high frequencies. We formed each simulated X0, . . . , X511 using the Davies–
Harte method (see Section 7.8), which does so by transforming a realization of a portion
Z0, . . . , Z1023 of a white noise process (the Zt values are on the Web site for this book – see
page xiv). To illustrate the similarity of FGN, PPL and FD processes with comparable H, α
and δ, we used the same Zt to create all six series. Although the top (bottom) three series
appear to be identical, estimates of their SDFs show high frequency differences consistent with
their theoretical SDFs.



process nonstationary stationary white noise stationary
LMP LMP not LMP

FGN — 1
2 < H < 1 H = 1

2 0 < H ≤ 1
2

PPL α ≤ −1 −1 < α < 0 α = 0 α ≥ 0
FD δ ≥ 1

2 0 < δ < 1
2 δ = 0 δ ≤ 0

Table 286. Parameter ranges for each named stochastic process for which the form of the
process is (a) nonstationary long memory, (b) stationary long memory, (c) white noise or
(d) stationary but not long memory.

δ = −α
2 HG = 1

2 + δ
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2 − α

2 HB = − 1
2 + δ

HB = − 1
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Figure 286. Relationships amongst the spectral slope α, the fractional difference parameter
δ and the Hurst coefficient H (both for FGN and DFBM). The unshaded, lightly shaded and
heavily shaded regions represent parameter values corresponding to, respectively, stationary
processes without long memory, stationary long memory processes and nonstationary long
memory processes (white noise processes occur when the boundary between the unshaded and
lightly shaded regions crosses a thick line). For this plot only, we distinguish between H as
a parameter for DFBM and for FGN by using HB in the former case and HG in the latter.
Note that, while α and δ range over the entire real axis, we must have 0 < H < 1 for both
DFBM and FGN.
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Figure 289. Simulated realizations of nonstationary processes {Xt} with stationary backward
differences of various orders (first column) along with their first backward differences {(1 −
B)Xt} (second column) and second backward differences {(1 −B)2Xt} (final column). From
top to bottom, the processes are (a) a random walk; (b) a modified random walk, formed using
a white noise sequence with mean µε = −0.2; (c) a random run; and (d) a process formed by
summing the line given by −0.05t and a simulation of a stationary FD process with δ = 0.45.


