

Figure 458. Translation and dilation of the function defined by $\gamma(t)=t \exp \left(-t^{2} / 2\right)$.

Figure 461. The Haar scaling function $\phi^{(H)}(\cdot)$ and corresponding approximation spaces. The first three plots on the middle row show three of the basis functions for the Haar approximation space $V_{0}^{(\mathrm{H})}$, namely, from left to right, $\phi_{0,-1}^{(\mathrm{H})}(\cdot), \phi^{(\mathrm{H})}(\cdot)$ and $\phi_{0,1}^{(\mathrm{H})}(\cdot)$. The right-most plot on this row is an example of a function contained in $V_{0}^{(\mathrm{H})}$. The top and bottom rows show, respectively, corresponding plots for the Haar approximation spaces $V_{1}^{(\mathrm{H})}$ (a coarser approximation than $V_{0}^{(\mathrm{H})}$) and $V_{-1}^{(\mathrm{H})}$ (a finer approximation than $V_{0}^{(\mathrm{H})}$). The right-most column of plots can be regarded as three Haar approximations of a single $L^{2}(\mathbb{R})$ function, with the associated scales of 2,1 and $1 / 2$ (top to bottom).

Figure 471. Level j equivalent $\mathrm{D}(4)$ scaling filters $\left\{g_{j, l}\right\}$ (left-hand column) and the $\mathrm{D}(4)$ scaling function $\phi(\cdot)$ evaluated over the grid defined by $\frac{l}{2^{j}}, l=-3 \cdot 2^{j}, \ldots,-1,0$ (right-hand) for $j=2,4,6$ and 8 (top to bottom). For a given j, the two plotted sequences consist of $3 \cdot 2^{j}+1$ values connected by line segments. In the right-hand column, the function $\phi(\cdot)$ is plotted at values $t=-3.0$ to $t=0$ in steps of, from top to bottom, $0.25,0.0625,0.015625$ and 0.00390625 . The filters in the left-hand column are plotted in such a manner as to illustrate the approximation of Equation (469), whose validity increases with increasing j.

Figure 473a. Venn diagram illustrating the nesting of subspaces V_{j} and W_{j}. There are five arcs emanating from the baseline. Starting at each end of an arc, there is a line segment that continues to the lower left-hand corner of the plot. The area enclosed by a given arc and the two line segments emanating from its ends represents an approximation space V_{j}. The largest such area outlines the entire figure and represents V_{-1}, while the smallest area represents V_{3} (note that $V_{3} \subset V_{2} \subset V_{1} \subset V_{0} \subset V_{-1}$, as required). The shaded areas represent the detail spaces W_{j}. Note that $W_{0} \subset V_{-1}, W_{1} \subset V_{0}, W_{2} \subset V_{1}$ and $W_{3} \subset V_{2}$ (there is no label for W_{3} due to lack of space). Note also that, while $V_{0} \subset V_{-1}$ and $W_{0} \subset V_{-1}$, it is the case that $V_{0} \cup W_{0} \neq V_{-1}$ because V_{-1} also contains linear combinations of functions that are in both V_{0} and W_{0} - such linear combinations need not be in either V_{0} or W_{0}, but rather can be in the space disjoint to V_{0} and W_{0} and represented by the scythe-like shape bearing the label V_{-1}. Finally, note that all the V_{j} and W_{j} intersect at a single point (represented by the lower left-hand corner of the plot) because all these spaces must contain the null function.

Figure 473b. Examples of functions in $V_{0}^{(\mathrm{H})}, W_{0}^{(\mathrm{H})}$ and $V_{-1}^{(\mathrm{H})}$. Note that, while the function in $V_{0}^{(\mathrm{H})}$ is constant over intervals of the form $(k-1, k]$ for $k \in \mathbb{Z}$, the function in $W_{0}^{(\mathrm{H})}$ integrates to zero over such intervals (the ends of these intervals are indicated in the middle plot by the vertical dotted lines). The function in $V_{-1}^{(\mathrm{H})}$ is in fact formed by point-wise addition of the functions in the other two spaces.

Figure 475. The Haar wavelet function $\psi^{(H)}(\cdot)$ and corresponding detail spaces. The first three plots on the middle row shows three of the basis functions for the Haar detail space $W_{0}^{(\mathrm{H})}$, namely, from left to right, $\psi_{0,-1}^{(\mathrm{H})}(\cdot), \psi^{(\mathrm{H})}(\cdot)$ and $\psi_{0,1}^{(\mathrm{H})}(\cdot)$. The right-most plot on this row is an example of a function contained in $W_{0}^{(\mathrm{H})}$. The top and bottom rows show, respectively, corresponding plots for the Haar detail spaces $W_{1}^{(\mathrm{H})}$ and $W_{-1}^{(\mathrm{H})}$ (Figure 461 shows the corresponding Haar scaling function and approximation spaces).

Figure 478. Level j equivalent $\mathrm{D}(4)$ wavelet filters $\left\{h_{j, l}\right\}$ (left-hand column) and the $\mathrm{D}(4)$ wavelet function $\psi(\cdot)$ evaluated over the grid defined by $\frac{l}{2^{j}}, l=-3 \cdot 2^{j}, \ldots,-1,0$ (righthand) for $j=2,4,6$ and 8 (top to bottom). For details on the layout, see the caption for the analogous Figure 471.

Figure 482. Multiresolution analysis of a function $x(\cdot) \in V_{-1}^{(\mathrm{H})}$ (upper left-hand plot), yielding three approximations, namely, $s_{0}(\cdot) \in V_{0}^{(\mathrm{H})}, s_{1}(\cdot) \in V_{1}^{(\mathrm{H})}$ and $s_{2}(\cdot) \in V_{2}^{(\mathrm{H})}$ (remaining plots on top row, from left to right), along with corresponding details $d_{0}(\cdot) \in W_{0}^{(\mathrm{H})}, d_{1}(\cdot) \in W_{1}^{(\mathrm{H})}$ and $d_{2}(\cdot) \in W_{2}^{(\mathrm{H})}$ (bottom row, from left to right).

$$
\begin{aligned}
& h_{l} \equiv \bar{h}_{-l}, l=0, \ldots, L-1 \quad g_{l} \equiv \bar{g}_{-l}, l=0, \ldots, L-1 \\
& \bar{h}_{l}=(-1)^{l} \bar{g}_{1-l-L} \\
& \left\{\bar{h}_{l}\right\} \longleftrightarrow \bar{H}(\cdot) \\
& \left\{h_{l}\right\} \longleftrightarrow H(\cdot) \\
& H(f)=\bar{H}(-f) \\
& \bar{H}(0)=0 \\
& \bar{H}(f)=-e^{i 2 \pi f(L-1)} \bar{G}\left(\frac{1}{2}-f\right) \\
& \bar{H}^{(m)}(0)=0, m=0, \ldots, r-1 \\
& \bar{h}_{l}=\int \phi(t-l) \frac{\psi\left(\frac{t}{2}\right)}{\sqrt{ } 2} d t \\
& \int \psi(t) d t=0 \\
& \bar{G}(f)=e^{i 2 \pi f(L-1)} \bar{H}\left(\frac{1}{2}-f\right) \\
& \bar{G}^{(m)}\left(\frac{1}{2}\right)=0, m=0, \ldots, r-1 \\
& \bar{g}_{l}=\int \phi(t-l) \frac{\phi\left(\frac{t}{2}\right)}{\sqrt{ } 2} d t \\
& \int \phi(t) d t=1 \\
& \text { support }\{\psi(\cdot)\} \subset(-(L-1), 0] \\
& \psi(\cdot) \longleftrightarrow \Psi(\cdot) \\
& \Psi\left(-2^{j} f\right) \approx \widetilde{H}_{j}(f) \\
& \psi\left(-\frac{l}{2^{j}}\right) \approx 2^{j} \tilde{h}_{j, l}=2^{j / 2} h_{j, l} \\
& \Psi(f)=\Phi\left(\frac{f}{2}\right) \frac{\bar{H}\left(\frac{f}{2}\right)}{\sqrt{ } 2} \\
& \Psi(f)=\frac{\bar{H}\left(\frac{f}{2}\right)}{\sqrt{ } 2} \prod_{m=2}^{\infty} \frac{\bar{G}\left(\frac{f}{2^{m}}\right)}{\sqrt{2}} \\
& \psi_{j, k}(t) \equiv \psi\left(\frac{t}{2^{j}}-k\right) / \sqrt{ } 2^{j} \\
& \psi(t)=\sqrt{2} \sum_{l} \bar{h}_{l} \phi(2 t-l) \\
& w_{j, k}=\int x(t) \psi_{j, k}(t) d t \\
& w_{j, k}=\sum_{l} h_{l} v_{j-1,2 k-l} \\
& \text { support }\{\phi(\cdot)\} \subset(-(L-1), 0] \\
& \phi(\cdot) \longleftrightarrow \Phi(\cdot) \\
& \Phi\left(-2^{j} f\right) \approx \widetilde{G}_{j}(f) \\
& \phi\left(-\frac{l}{2^{j}}\right) \approx 2^{j} \tilde{g}_{j, l}=2^{j / 2} g_{j, l} \\
& \Phi(f)=\Phi\left(\frac{f}{2}\right) \frac{\bar{G}\left(\frac{f}{2}\right)}{\sqrt{ } 2} \\
& \Phi(f)=\prod_{m=1}^{\infty} \frac{\bar{G}\left(\frac{f}{2^{m}}\right)}{\sqrt{ } 2} \\
& \phi_{j, k}(t) \equiv \phi\left(\frac{t}{2^{j}}-k\right) / \sqrt{ } 2^{j} \\
& \phi(t)=\sqrt{2} \sum_{l} \bar{g}_{l} \phi(2 t-l) \\
& v_{j, k}=\int x(t) \phi_{j, k}(t) d t \\
& v_{j, k}=\sum_{l} g_{l} v_{j-1,2 k-l}
\end{aligned}
$$

Table 499. Key relationships involving (i) wavelet and scaling filters $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$ and their time reverses $\left\{\bar{h}_{l}\right\}$ and $\left\{\bar{g}_{l}\right\}$ and (ii) wavelet functions $\psi(\cdot)$ and scaling functions $\phi(\cdot)$.

