Nutrition in Infancy and Childhood

Infant Nourishment Part 2

Infant Nourishment

Objectives:

- To discuss critical nourishment issues for infants to support appropriate growth and development
- To describe the influence of specific nutrients on growth and development
- To describe typical patterns of infant nourishment

Nutritional Influences on 'Growth'

- Growth & protein-energy ratio
- Growth & protein quality
- Growth & fluid requirements
- Growth & specific nutrient deficiency

Protein content of milks

Pro (gm/oz) 0.3

0.5

- Food
- Human milk
- Infant formulas
- Infant soy formulas 0.5
- Homogenized milk 1.0

Estimated requirements for energy & protein

and s	upp	orts	s grov
Age	10^{th}	50^{th}	90th
1 mo	14	20	28
2 mo	23	28	34
3 mo	25	31	40
4 mo	27	31	39
5 mo	27	34	45
6 mo	30	37	50

Water- prudent recommendation 1.5 ml/kcal of energy expenditure of infants Criteria for recommendation

- large surface area per unit of body weight
- Higher %age of body water
- High rate of water turnover
- Limited capacity of kidneys to handle solute load from high protein intakes required for growth
- Susceptibility to dehydration
- Inability to express thirst

Recommendation corresponds to water-energy ratio in human milk and formulas

Growth" and Specific Nutrients

- Energy
- Protein
- Water
- Calcium
- Zinc
- Iron
- Biotin
 - Chloride

• Folate

Thiamine

• Vitamin B12

• Vitamin D

• Vitamin A

• Vitamin C

Calcium, zinc, iron

• Deficiency (in the presence of adequate intake of other nutrients) leads to growth failure

Vitamin B12

- No reports of overt toxicity
- Overt deficiency documented among infants and children who are fed no animal foods & are not supplemented
- 15 mo old infant
- Breastmilk only, 10 x/day
- Appeared wellnourished
- Refused solids
- Demonstrated developmental delay
- < blood B12, folate, Fe

Vitamin B12

- Mother, appeared well-nourished
- taking extra Vit A, 100ug B12, 3-4000mg Vit C/day
- Reluctant to D/C
 breastfeeding
- Worried re: intro of solids, allergies
- Infant treatment
 supplemented
 - folic acid, iron
 - 1000 ugB12 IM
 - PolyViFlor
- Infant outcome

 fully recovered

Vitamin D

- Most toxic of fat soluble vitamins
- Infants susceptible
 to toxicity
- Signs cerebral, cardiovascular, renal damage
- Problems with excess supplementation
- 3-4000IU/day = hypercalcemia
- Excess Vit D = calcium deposits in soft tissue, can ⇒irreversible kidney damage

Vitamin D deficiency rickets

- At risk:
 - Long term breast feeding, w/o suppl
- Dark skinned children w limited exposure to sunlight
- No animal products, no supplementation
- no supplementation, no fortified milk
- Classic symptoms of deficiency
- delayed motor
- function
- hypotoniabowing of legs
- abnormal gait
 saber shins

Vitamin D deficiency rickets

- Recommendation
 Infants = 200 IU/day
 - minimum beginning in 1st 2 mo of life
- Toxicity

 3000-4000 IU/day

Vitamin A Recommendation= 1000 IU/day

- Deficiency
 - night blindness
 skin lesions, hair loss, blurred vision,
 - diarrhea – liver, kidney, bone
 - damage
- Toxicity
 - 3000 supplemented RE (10,000 IU/day) daily for a year
 - Infant who was fed chicken livers daily
 - Infants who receive adult supplements

Vitamin A

- A. 7 mo old twins with irritability, vomiting, bulging fontanels
 - Intake: 4 oz chicken liver/day for 4 mo
- B. Infant fed 18,500 IU daily for 1 mo

 Liver = 15,000 IU/oz
 - Vitamins = 3600 IU
 - Formula = 400 IU
 - Carrots, squash = 4000 IU provitamin A

Recommendation: infants: 1000 IU/day Toxicity: 3000ugRE (10,000IU)/day for a year

Ascorbic acid

- Deficiency - scurvy
- Excess – nausea, diarrhea
- Recommendation:
 Infants =35 mg
- Toxicity
- 1-2 gm/day Chewables
 - dental enamel erosion?

Folate, Vitamin C, Biotin, Chloride, Thiamine

• Single nutrient deficiency in infant formulas have led to growth failure, neurological damage and death

What are the nutritional recommendations for infants and

- Breast milk or formula provides adequate
 - nutrition up to the age of one year.
 - Breast milk has important immunogenic properties
- Solid food are introduced beginning at 4-6 months- developmental readiness
- 'Least-allergic' foods introduced first
 - e.g., rice cereal
 - additional foods added gradually, one at a time.
- Whole cow's milk can be used after age 1 year.

Supplements for the first 6 months

- Breast milk
 - Vitamin D = 400 IU
 - Fluoride = 0.01-0.25 mg
- Commercial infant formula
 - fluoride= none if in water or 0.25 mg
 - iron+ 5-10 mg at 4 mo..

Children for whom Vitamin and Mineral Supplements are Recommended for Children-

- particularly at risk for limited nutrient intake
- with milk allergy or lactose intolerance
- Uriboflavin, Vit D, calcium
 exclusively fed goat's milk
- ↓ folacin
- semi-synthetic diets
- whose families have chosen to be vegetarian or vegan
- with restricted variety by personal choice

Introducing Solid Foods

- Why introduce solids?
 Develop oral motor skills, add nutrients
- Foods to support developmental progress-Which foods? When to add?
 Cereal, fruits, vegetables, juices, crackers
- Foods to provide specific nutrients

 Calcium, iron, protein, vitamin C, vitamin D
- · Oral health concerns

Potential disadvantages of early introduction of solid foods

- · Poor oral motor coordination
- Insufficient energy and nutrient replacement for breastmilk or infant formula
- · Increased risk of food allergies
- Disturbance of appetite regulation, may encourage overfeeding
- May increase the infant's desire for sugar and salt intake later in life

Consequences of too early weaning

- Risk of increased morbidity due to diarrhea and food allergies

 due to intestinal immaturity
- Decreased breastmilk production – displaced by weaning foods
- Malnutrition - due to diarrheal disease

Consequences of delayed weaning

Faltering growth

- breast milk alone provides inadequate energy
- Depressed immunity
- due to inadequate energy & protein intake
- Increased diarrheal disease – due to depressed immunity
- Malnutrition
 - due to inadequate energy, diarrheal disease
- Micronutrient deficiencies
 - due to inadequate dietary intake, increased needs with infection

Bit State Control Contro Control <thControl</th> <t

Food Measure		e Iron	
		(mg	
ron-fortified formula	8 oz	2.9	
nfant cereal, rice	I TB	1.7	
Strained meats with vegetables	2 TB	0.1	
Strained beef	2 TB	0.5	
Meats	2 oz	1.2	
- -gg	1	0.7	
Peanut butter	I TB	0.3	
Bread, enriched, white	I slice	0.7	
Macaroni, enriched, cooked	1/4 c	0.5	
/egetables	1/4 c	0.2	
Fruits	1∕4 c	0.1	
CherriOs	1/2 C	1.2	
Rice Chex	1/2 C	1.0	

