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a b s t r a c t

Extremes of the El Niño-Southern Oscillation (ENSO) are known to have various socio-economic impacts,
including effects on several Pacific fisheries. The 137-year-long record of Darwin sea-level pressure offers
a uniquely long-term perspective on ENSO and provides important insight into various aspects of
interannual to century-scale variability that affects these fisheries. One particular issue of interest is
whether there is a centennial-scale (or longer) trend that can be expected to alter the future distributions
of these fisheries. Since most tropical Pacific fishery records are no longer than a few decades, another
issue is the extent to which trends over these recent decades are a good basis for detecting the presence
of long-term (e.g., centennial-scale) deterministic changes, and perhaps thereby projecting future
conditions. We find that the full 137-yr trend cannot be distinguished from zero with 95% confidence,
and also that the ENSO variance in recent decades is very similar to that of the early decades of the
record, suggesting that ENSO has not fundamentally changed over the period of large increase in
atmospheric CO2. However, the strong multi-decadal variability in ENSO is reflected in decades with
quite different levels of ENSO effects on the ecosystem. Many multi-decadal subsets of the full record
have statistically significant trends, using standard analysis techniques. These multi-decadal trends are
not; however, representative of the record-length trend, nor are they a useful basis for projecting
conditions in subsequent decades. Trend statistical significance is not a robust foundation for speculation
about the future. We illustrate how the difficulties involved in determining whether a trend is
statistically significant or not mean that, even after careful consideration, an unexpectedly large number
of trends may reach standard statistical significance levels over the time spans for which many newer
records are available, but still not continue into future decades or be indicative of deterministic changes
to the system. Analysis of the Southern Oscillation Index, another common ENSO index, but one that has
been directly measured for fewer years than has Darwin, yields similar results.

& 2014 Published by Elsevier Ltd.

1. Introduction

The warm (El Niño) and cool (La Niña) phases of the El Niño-
Southern Oscillation (ENSO) are now well known to cause
extremes in temperature and precipitation in affected areas
around the globe (see Ropelewski and Halpert, 1987, 1989;
Halpert and Ropelewski, 1992, for seminal studies on this topic,
and Chiodi and Harrison, 2013, for an updated U.S. perspective).
They can also cause large-scale changes in the distribution of
several pelagic fish populations (Fiedler, 2002; Lehodey et al.,
2006). These changes include an at least temporary collapse of the
Peruvian anchovy population during some strong El Niño years
(Barber and Chavez, 1983, 1986; see also Bertrand et al., 2004),

links to various aspects of northeast Pacific ecosystem variability
(McGowan et al., 1998), as well as dramatic changes in the
distributions of Pacific tuna, especially the tropical skipjack
(Katsuwonus pelamis) species (Kimura et al., 1997; Lehodey et al.,
1997, 2006; Lu et al., 2001). Different upper-ocean changes
associated with ENSO have been used to rationalize the ENSO
effects on these fisheries. Among the more conspicuous are the
observed basin-scale changes in the distributions of warm water,
thermocline and mixed layer depth, and chlorophyll concentration
along the equatorial Pacific. Zonal displacements of typical condi-
tions extend over thousands of kilometers along the equator
during ENSO extremes, and chlorophyll and sea surface tempera-
ture (SST) often track each other closely (see Fig. 1 and Park et al.,
2011). Very large changes in large-scale tropical Pacific chlorophyll
concentration and distribution also exist between warm and cold
extremes (see Lehodey et al., 1997; Murtugudde et al., 1999; Fig. 2).
In the tropical Pacific, these interannual ENSO changes have

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/dsr2

Deep-Sea Research II

0967-0645/$ - see front matter & 2014 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.dsr2.2013.12.020

n Corresponding author. Tel.: þ1 206 526 6225.
E-mail address: D.E.Harrison@noaa.gov (D.E. Harrison).

Please cite this article as: Harrison, D.E., Chiodi, A.M., Multi-decadal variability and trends in the El Niño-Southern Oscillation and
tropical Pacific fisheries implications. Deep-Sea Res. II (2014), http://dx.doi.org/10.1016/j.dsr2.2013.12.020i

Deep-Sea Research II ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/09670645
www.elsevier.com/locate/dsr2
http://dx.doi.org/10.1016/j.dsr2.2013.12.020
http://dx.doi.org/10.1016/j.dsr2.2013.12.020
http://dx.doi.org/10.1016/j.dsr2.2013.12.020
mailto:D.E.Harrison@noaa.gov
http://dx.doi.org/10.1016/j.dsr2.2013.12.020
http://dx.doi.org/10.1016/j.dsr2.2013.12.020
http://dx.doi.org/10.1016/j.dsr2.2013.12.020
http://dx.doi.org/10.1016/j.dsr2.2013.12.020


°C

19
85

19
90

19
95

20
00

20
10

20
05

140°E 140°W140°W180°

Sea Surface Temperature

Contour at 29°C
Climatology (1982-2012)

20
10

20
00

140°E 140°W140°W180°

Contour at 0.1 mg m
Climatology (1997-2010)

Chlorophyll

-1 0-0.5 log ( mg m )

0.5 mg m10.1

20 25 30

Temperature

Chlorophyll
Concentration

5000km

Scale:

Fig. 1. Time-longitude sections of equatorial Pacific (21S–21N average) chlorophyll concentration (left) and sea surface temperature (right).
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Fig. 2. Snapshots of monthly average chlorophyll conditions during the 1997–1998 transition from a strong El Niño (upper panel) to La Niña (lower panel) state. The 29 1C
contour is overdrawn for reference.
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amplitudes that greatly exceed those associated with the mean
seasonal cycle (see Fig. 2) or with model projections of thermal
conditions over the several coming decades under increasing
atmospheric CO2 concentration. Bio-physical modeling efforts
have suggested that in addition to the observed large-scale
displacement of stocks associated with these changes, ENSO can
have important effects on tuna recruitment and abundance
statistics as well (Lehodey, 2001, 2003).

ENSO effects are thus of fundamental concern to the design and
implementation of effective management practices for many of the
region0s fisheries (Aqorau, 2009; Miller, 2007), which, in the case
of the Pacific tuna fishery, provide about 70% of the world0s
harvest (Lehodey et al., 1997) and are an important source of food
security and economic development for the Pacific island coun-
tries and territories (Bell et al., 2012). For those affected or
otherwise interested in the state of Pacific fisheries, there is reason
to be very interested in how the distribution of ENSO events will
change in coming decades.

There has been much interest recently in analyzing coupled
Earth System models (i.e. ocean-atmosphere-land) forced with
projected concentrations of atmospheric CO2 for projections of
how Earth0s climate and ecosystems (including pelagic) might
change in the future (Bell et al., 2012, 2013; Ganachaud et al.,
2012; Lehodey et al., 2012). Although there are some relevant
aspects of the projected changes that most models agree upon
(e.g. sign of long-term temperature change) changes to the freq-
uency and amplitude of ENSO is not one of them (Ganachaud et al.,
2012); different models currently give decidedly different projec-
tions of how ENSO might change in the future (Collins et al., 2010;
Vecchi et al., 2008). Other studies have found these models
capable of displaying quite different types of interannual behavior
from one multi-decadal period to the next, even when the model
forcing is held constant (Wittenberg, 2009).

About a decade ago, there was vigorous debate about whether
or not secular change in ENSO was already evident in the observed
Darwin record; Trenberth and Hoar (1996) presented the case for
this view, whereas Harrison and Larkin (1997) and Rajagopalan
et al. (1997) showed that the answer depended on the choice of
statistical methods (see also Trenberth and Hoar, 1997; Wunsch,
1999). More recently, Power and Smith (2007) reported that the
June–December values of the Southern Oscillation Index (SOI),
along with Darwin sea level pressure (SLP) averaged over the
1977–2006 period, reached record levels that “are unlikely to have
come from the same ‘population0 as the earlier values,” leading
them to suggest that “climate change” was responsible. Based on
linear correlation results, Diaz et al. (2001) have suggested that
there have been substantial changes in the strength of several
ENSO “teleconnections” between the post-1977 and previous
(1948–1977, in this case) periods, including the strength of ENSO
effects on atmospheric circulation anomalies in the North Pacific.
Nicholls (2008) examined the behavior of the SOI in the 50-yr
period from 1958 to 2007 and found a statistically significant
linear trend when averages over only some months of each year
were considered; however, shifting focus to other months resulted
in there being no statistically significant trend. Power and Kociuba
(2011) reported that the 1876–2008 trend in Darwin SLP is
statistically significant at the 90% confidence level, based on a
Student0s ‘t’ test. Focusing on SST data from an ocean reanalysis,
Ray and Giese (2012) have examined the changes in various
ENSO measures (e.g. amplitude, duration, frequency) throughout
this (1871–2008) period and concluded that, although there are
concerns about uncertainties caused by sparse SST observations,
especially in the first half of their record, there is no evidence that
the changes seen (including considerable decadal variability) are
caused by global warming. Subsequent examination of the model
runs submitted to the WCRP Coupled Model Intercomparison

Project (CMIP3) by Power and Kociuba (2011), which failed to
reveal a 1977–2006 SOI anomaly in these models (on average) that
was similar to the one in the observations, led them to conclude
that the post-1977 SOI behavior highlighted by Power and Smith
(2007), though statistically unusual, is a component of natural
variability (unrelated to increasing atmospheric CO2). We are
unaware of other recent studies into the long-term variability of
ENSO, particularly with applications to tropical Pacific fisheries.
Because of the lack of consensus in global-coupled modeling
efforts (as well as observational-statistical studies), it seems timely
to revisit what the available observations can contribute to our
understanding of these issues.

Here we revisit the question of whether there is evidence for a
long-term (4100 yr) trend in the state of the El Niño-Southern
Oscillation (ENSO), and whether 100þyear-long trends (best-fit-
linear) can be reliably determined from shorter (i.e. 50 yr, 40 yr,
30 yr, etc.) multi-decadal records, such as those that have been
made available in recent decades by various improvements to our
observing capabilities, including the increased availability of data
from commercial vessels and other in situ sampling methods since
WWII, the use of satellite-based observations starting in the 1980s
or 1990s, as well as other improvements in our ability to observe
ocean ecosystems over the last two decades (Ducklow et al., 2009).
To do this, we use both the traditionally discussed SOI, which has
typically been the ENSO index referred to in the pelagic studies
mentioned above, as well as the record of SLP from Darwin,
Australia, which is both a component of the SOI and a good proxy
itself for ENSO at interannual and longer timescales (e.g. correla-
tion with the SOI is 0.9 when a 13-month triangular filter is
applied to the Darwin record). We primarily consider the Darwin
record because it is a good proxy for ENSO and has been directly
measured for longer than the SOI. Power and Kociuba (2011) have
suggested that Darwin may become a better indicator of the east–
west equatorial Pacific SLP gradient than the SOI in the coming
century if the relevant aspects of the WCRP/CMIP3 model predic-
tions prove correct. We shall show that the Darwin- and SOI-based
observational results are nonetheless consistent with one another
at this point.

Because it offers a simple measure of whether ENSO is changing
(and it is a commonly examined measure in general), we compute
the slope of the best-fit line (“trend”) over the full 137-yr record
(s) and determine its statistical significance using the different Monte
Carlo methods. We also compute the amounts of variance seen in
different multi-decadal sub-segments and inspect them for evidence
of secular change. Since high-quality records of many other aspects of
the tropical Pacific system (e.g. fishery catch and effort data, sea
surface temperature, oxygen and chlorophyll concentration) are not
available for nearly as long as the Darwin record, we also determine
the likelihood of being able to infer the observed 137-yr trend from
just a given decadal/multi-decadal sub-segment. Further, we exam-
ine the roles that the available statistical methods may or may not
play in helping to mitigate the risks involved in using shorter sub-
segments to infer information about longer term behavior and decide
whether deterministic change is evident.

The importance of properly considering the effects of the way
variability is distributed at low frequencies before making conclu-
sions about whether deterministic trends are present in bio-
geophysical time series has already received a considerable
amount of attention (e.g. Hughes and Williams, 2010; Wunsch,
1999). Thus, we expect that a general need for caution in such
efforts will already be appreciated by many readers. The case-
study we offer herein, for the reasons described above, is one with
particular relevance to Pacific fisheries. In it, we will examine the
extent to which taking a careful approach in this case, such has
been advocated for previously, should really be expected to reduce
the uncertainties involved.
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2. Data and methods

Monthly averaged Darwin SLP values, available from the
Australian Bureau of Meteorology (BOM) at ftp://ftp.bom.gov.au/
anon/home/ncc/www/sco/soi/darwinmslp.html, were averaged to
seasonal resolution for this study (period 1876–2012). Tahiti SLP
values were also obtained from BOM and used to calculate the SOI
according to the traditional method of Troup (1965), in which case
the SOI is determined from standardized Tahiti minus Darwin SLP
anomalies.

The chlorophyll data shown here for illustrative purposes were
obtained from the National Atmospheric and Space Administration
(NASA) OceanColor website available at http://oceandata.sci.gsfc.
nasa.gov/SeaWiFS (see O0Reilly et al., 1998, for discussion of the
SeaWiFS chlorophyll algorithms). The National Oceanic and Atmo-
spheric Administration (NOAA) Optimally Interpolated data set
(Reynolds et al., 2002) was used for SST information (available at
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.oisst.v2.html).

To determine trend statistical significance, we report mainly on
results from a bootstrap/Monte Carlo-based test, such as has been
available for some time now (Ephron and Tibshirani, 1991). The
test procedure is as follows: (1) the record to be tested is selected;
(2) the trend over this record is determined using a linear least-
squares fit; (3) this trend is removed from the record so that the
character of the variability that is unrelated to the trend can be
estimated; (4) the amount and distribution of this variability
otherwise present in the record (the non-trend variability) is
evaluated; and (5) the test determines whether or not the null
hypothesis that the record-length trend is produced by the non-
trend variability is true. The last step in the procedure used herein
involves generating a large number (N¼1000) of model time
series and comparing the distribution of these model trends with
that seen in the actual record. In the bootstrap procedure, the
model time series are generated by randomly sampling (with
replacement) the observed detrended record, comprised of n
observations each representing averages over intervals of Δt (three
months in this case), spanning an overall length T¼nΔt. The sub-
sampling is carried out using the detrended (rather than full)
record in accordance with step 3 above so that the test-estimate of
the ‘non-trend’ behavior does not include the trend to be tested
itself. In this case, nb bootstrap samples are selected, where

nb ¼ T=Tb;

and Tb is the estimated time between independent samples in the
original record.

For the bootstrap model, the information in step 4 listed above
comes from the distribution of values seen in the actual record and
the estimated value of Tb. In the base-case test used here, Tb is
estimated from the lagged-autocorrelation of the record using the
method proposed by Leith (1973). In this case, the lagged auto-
correlation is truncated at the first zero-crossing to avoid having
the answer unduly influenced by the often non-negligible long-lag
auto-correlations that occur as the artifacts of using finite records.

We also discuss the character and behavior of a mixed auto-
regressive moving-average (ARMA) stochastic model (Box and
Jenkins, 1976). The model mainly used in this case is one with 3
auto-regressive (ai) and 1 moving-average (b1) parameters with
the form

yðtÞ ¼ a1 � yðt�1Þþa2 � yðt�2Þþa3 � yðt�3ÞþεðtÞþb1 � εðt�1Þ;

where ε(t) is the value of a random normal process with zero mean
at time t, and the parameters a1, a2, a3, b1, as well as the standard
deviation of ε (sε), are fit to the record in question. Over the 137 yr
of record now available, we find that the best-fit ARMA(3,1)
parameters (based on a minimization of the difference between
the theoretical ARMA spectrum and the spectrum estimated from
the actual 137-yr Darwin record) are

a1 ¼ 1:2494; a2 ¼ �0:3529; a3 ¼ �0:0935; b1 ¼ �0:6235 and

sε ¼ 0:6463;

which yield the theoretical spectrum shown in Fig. 4 (red curve).
The Fourier-based estimate of the spectral density of variance in
the Darwin record (blue dots in Fig. 4) and its associated uncer-
tainty are found by the methods described by Bendat and Piersol
(1971).

We also briefly discuss some results from wavelet decomposi-
tion techniques described by Percival and Walden (2000). Speci-
fically, we use the “maximal overlap discrete wavelet transform,”
or MODWT, employed with the LA(8) filter (as described in
Chapter 5 of Percival and Walden, 2000). The MODWT allows
the contribution to the total variance due to changes at a given
(discrete) wavelet scale to be estimated. Generally, the MODWT
wavelet scale ‘j’ is given by 2j�1 Δt. In this case, with Δt¼3
months, the first wavelet scale (j¼1) is six months, the second
(j¼2) is one year, etc.

3

2

1

0

-1

-2

1880 1900 1920 1940 1960 1980 2000

Darwin Mean Sea Level Pressure Anomaly

m
b

Fig. 3. Darwin seasonally averaged sea level pressure anomaly, period 1876–2011.

101

10-1

10-1

10-0

10010-2

Darwin Spectral Density

Frequency  (cycles/season)

P
ow

er
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3. Results

3.1. Darwin SLP variability

The seasonally averaged Darwin record is shown in Fig. 3
(period 1876–2012). Its estimated spectral density of variability
is shown in Fig. 4 (blue dots), along with the estimated uncertainty
(blue vertical lines) that results from averaging over ten adjacent
frequency bands. The spectrum of the best-fit ARMA(3,1) model
(red line) is also shown in Fig. 4. Chu and Katz (1989) have
previously suggested that this class of stochastic model can be
used to represent the spectral characteristics of ENSO well, and
Trenberth and Hoar (1996) have previously suggested that this
specific order (three auto-regressive and one moving-average
parameter) is optimal for the Darwin record. Indeed, the spectra
of the best-fit ARMA(3,1) model (red curve in Fig. 4) and the more
traditionally estimated spectrum (blue dots) are roughly consis-
tent with one another and agree that the Darwin, and thus ENSO,
spectrum is “red” in that it is generally characterized by increased
energy at longer, compared to shorter, periods.

3.2. Multi-decadal and 137 yr trends

Fig. 5 shows the best-fit linear trend over the full 137 yr, along
with some examples of trends seen in some of the most recent
decadal to multi-decadal sub-segments of the record. Over 100 yr,
the 137-yr trend (green line) rises �0.1 mb, or about a tenth of the
time series standard deviation (0.86 mb). The trends over the last
10 and 20 yr, on the other hand, are negative and have much larger
slopes (blue lines) than seen over the full 137 yr. The trend over
the last 30 yr (shown by a blue line) is also negative, but sloped
less steeply than those seen over the last 10 and 20 yr, whereas the
trends over the last 40 and 50 yr are positively sloped (red lines).
Sliding back about a decade, the sub-segment trends at these
multi-decadal timescales that ended in the early 1990s to early
2000s tended to be positive (i.e. more El Niño-like) and have
relatively large amplitudes (the red-dashed line shows an opti-
mally large 50-yr case).

A similar examination of the SOI record (see companion Fig. A1
in Appendix A) shows it to be in broad agreement with Darwin in

these aspects (notwithstanding the change in sign that occurs by
definition).

Fig. 6 shows the distributions of trends seen in 10 to 50 yr sub-
segments of the Darwin record as their starting/ending dates are
methodically moved, one season at a time, through the full 137-yr
record. In each panel, the 137-yr trend value is marked by a green
dashed line for reference. The scale of the x-axis in each panel
varies with the range of trend amplitudes seen, which substan-
tially decreases moving from the shorter to longer sub-segment
lengths (the entire range of trends seen in the 50-yr case fits
within the middle 1/6th of the 10-yr distribution).

These distributions (Fig. 6) show that it is highly unlikely that
a sub-segment start/end date selected at random would yield a
trend with slope close to the best-fit 137-yr result of 7.9�
10�5 mb/yr. In the least unlikely case (50 yr), only 8% of the sub-
segment trends fall within a factor of 2 of the 137-yr value. For the
shorter sub-segments considered, this is true for only 4% or fewer
(see numbers in green in each panel). Most sub-segments yield
trends that have considerably larger amplitudes than the one
seen over the full 137 yr. The sign of these sub-segment trends;
however, have a roughly equal chance of being positive or
negative. For example, at 20 yr, the distribution is split perfectly
between positive and negative trends (Table 1). And the largest
imbalance among the segment lengths (10% more negative than
positive trends at 40 yr) does not violate at standard confidence
intervals the null hypothesis that positive and negative trends are
equally probable according to our Monte Carlo methods. This is
true also at each sub-segment length for the numbers of positive
and negative trends seen in the SOI distribution (Table A1).

3.3. Trend statistical significance

Trend statistical significance tests are often used in studies like
this to evaluate whether or not the trend (i.e. slope of the best-fit
line) observed over a given record can easily be produced by the
non-trend (e.g. interannual timescale) variability present. In the
case that the observed behavior is easily matched by a model with
no change in its expected average value from the beginning to the
end of the record, then the observed trend is said to be not
statistically significant, or statistically indistinguishable from zero.
Each test discussed here agrees that the best-fit 137-yr trend
(green line in Fig. 5) is not statistically significant (not statistically
different from zero).

Despite this, many of the trends seen over just a few to several
decades0 worth of observations do reach statistical significance at
the 95% confidence interval. The numbers of statistically signifi-
cant trends found at each sub-segment-window length considered
is shown by the shading (red for the base-case bootstrap test) in
Fig. 6. None of the sub-segments that yield a trend close to the
observed 137-yr trend (e.g. in the same bin) are found to be
statistically significant. The statistically significant trends are
instead found near the tails of the distributions (consistent with
the finding that the 137-yr trend is not much different from zero).

Thus, with the benefit of a longer (137 yr) record, we can see
that the statistically significant multi-decadal sub-segment trends
(“pseudo-false-positives” hereafter) would, in fact, yield the most
misleading estimates of the observed 137 yr trend. For records like
these, predicting future behavior based on trends seen over a few
decades of observations would be unwise. Yet, when longer-term
perspectives like this are unavailable, it is often assumed that
trends that reach statistical significance over several decades are
indicative of some type of persistent change in the dynamics of the
system. Test confidence intervals are used in tests like these to
judge the likelihood that statistical significance is reached falsely.
We next examine the reliability of test confidence intervals in the
present context.
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3.4. Test reliability

For an ideal test, the nominal confidence interval gives the
frequency that false-positive results are returned. For example, at
95% confidence, 5% of the results should be false-positives (null
hypothesis is judged false by test, but actually true). In Fig. 6 we
see that, depending on the sub-segment length, the fraction of
sub-segment trends that reach statistical significance range from
�1% at 20 yr to 13% at 50 yr, or about 2.5 times more than
expected if there is no long-term trend.

A simulation experiment was conducted to evaluate the test
performance in a scenario where the actual spectrum and long-
term trend of the (simulated) record in question are both known
perfectly. The details of this simulation are provided in Appendix B,
for interested readers, with the main results described below.
Because the 137-yr Darwin trend is small (not statistically different
from zero) we focus on the case where the spectral characteristics of
the non-trend variability are realistic, but there is no specified trend.

When the base-case test is evaluated in this situation, we find
that it is overly strict. For example, only 2% of the simulated 50-yr
sub-segments are found to produce statistically significant trends,
meaning that the test0s nominal 95% confidence interval is
effectively acting like a 98% confidence interval.

Next we “correct” the test so that it produces accurate results in
the simulation experiment. Then we re-apply the test to the actual
Darwin record. Based on the “corrected” test, we find that 11–20% of
the Darwin sub-segments have statistically significant trends (Fig. 6).
This is roughly 2 to 4 times as many as should be found if there is no
long-term trend. The 137-yr trend, however, remains firmly insignif-
icant (even at the nominal 66% level) according to the “corrected”
test, even though we have made the test more lenient.

What is notable here is that the base-case and “corrected” tests
yield substantially different numbers of statistically significant
results even though the two test-assumed levels of non-trend,
low-frequency variability present in Darwin both fit well within
the uncertainty bounds associated with our ability to estimate
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this non-trend variability (this is described in more detail in
Appendix B). Obtaining reliable confidence intervals in tests like
these is difficult; when we “corrected” the test as carefully as we
could based on the 137 yr of data available, the number of pseudo-
false positive trends only increased.

Subsequently, we have modified the test so that it makes different
assumptions about the levels of non-trend variability present at low
frequency in the Darwin record that more fully sample the uncer-
tainties associated with our ability to estimate this quantity from the
actual Darwin record. Using the uncertainty bars shown in Fig. 4 to
estimate this uncertainty range, we find that the pseudo-false-
positive rate (at the nominal 95% interval) ranges from 0–5% in the
upper-extreme to 30–45% in the lower extreme. In other words, up to
9 times too many pseudo-false-positive trends are found in the actual
Darwin sub-segments, even though test assumptions remain consis-
tent with observations to within the associated uncertainty.

This uncertainty (i.e. the nominal 95% confidence level is
effectively somewhere in the 55% to 499.9% range) occurs even
though we use the full 137 yr of observations and average over 10
adjacent frequency bands to constrain it (not averaging over 10
adjacent bands would result in a substantially larger uncertainty
bar). Having only a single multi-decadal sub-segment available
would be much more problematic. Further, the actual structure of
the non-trend variability that lies beyond the lowest resolved
frequency (1/nΔt) is a key aspect that can only be guessed at.

It must be recognized that the outcomes of these tests greatly
depend upon the necessary assumptions about the amount and
character of non-trend variability present at low frequency.

We have examined the performance of other types of available
tests, including those based on the now classic Student0s ‘t’
methods, as well as others that employ subsequent ARMA-based
procedures in place of the bootstrap methods described above (the
ARMA(3,1)-based test results are shown in orange shading in
Fig. 8). The description of these results is provided in more detail
for interested readers in Appendix B, where it can be seen that, in
each case, test results show a strong sensitivity to the details of the
necessary assumptions about the amount and character of low-
frequency variability present.

3.5. Sliding-window variance

We have also computed the amounts of variance seen in sub-
segments of the Darwin record as their starting/ending dates are
moved through the full 137 yr record. The left-hand panels of Fig. 7
show the variance amounts for Darwin sub-segment lengths from 10
to 50 yr (SOI-based results are shown on the right). The overall range
of sub-segment variances seen in these panels increases moving from
longer to shorter sub-segments, but in each case, some of the lowest
variances are seen among sub-segments that end roughly in the
middle of the available historical record (1940s to 1960s). Interestingly,
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the variances of the longer sub-segments considered (50 and 40 yr)
increase almost monotonically from this mid-record low to the start/
end. In these longer multi-decadal cases, it is not difficult to imagine
that consideration of just one or the other halves of the full record, in
the event one portion of the record was not available, would yield
misleading expectations about the trajectory of the other. The behavior
at shorter sub-segment lengths (10 and 20 yr) shows also that
variance generally increases moving away from the mid-point of the
record and, moving forward in time, peaks in the 1980s or 1990s but
then falls to near or below average levels in the most recent decades.
For each sub-segment length shown, early period (pre-1940) peaks
can be found with amplitudes similar to those seen in more recent
decades, suggesting that long-term changes in the dynamics of the
tropical Pacific are not necessary to explain the presence of either
extreme. ENSO variance in recent decades is not different from that of
early decades in the record.

Wavelet analysis techniques (Percival and Walden, 2000) allow
the total variance contained in a record to be separated into
amounts contributed by changes over different “wavelet scales.”
To further examine some of the decadal variability evident in
Fig. 7, we have first performed wavelet decomposition (Percival
and Walden, 2000) on the Darwin record. Then, just as is done for
the actual Darwin record in Fig. 7, the amounts of variance at each
wavelet scale are averaged in a sliding-window sense and plotted
in Fig. 8. Just the 30-yr sliding-window sub-segment length is used
in this case for brevity (c.f. Fig. 7 middle-row, left column). We use
the same y-axis scale in each panel of Fig. 8 to facilitate compar-
ison among results at different wavelet scales. It can thereby be
seen that changes occurring at the 2-yr wavelet scale exhibit the
largest range of 30-yr-averaged variance levels, and thus, make the
largest contributions to the changes in (total) variance seen from
one 30-yr sub-segment to another. As the wavelet scale moves
away from 2 yr, these contributions generally decrease. Thus, most
of the changes in Darwin variance from one 30-yr period to
another, including the progression from high levels of variance
in the early 1900s to lower levels in the 1940s to the 1960s, and
then a return to high levels again in the early 2000s, are
attributable to SLP changes taking place over timescales associated
with the life cycle of ENSO events (Larkin and Harrison, 2002).

4. Discussion and conclusions

ENSO induces very strong interannual and multi-decadal varia-
bility in the ecosystem of the tropical Pacific Ocean, with large effects
on several commercially important fisheries. Whether ENSO statistics
are undergoing long-term change or are likely to change in coming
decades is thus of substantial societal relevance to the communities
that depend upon and are tasked with managing these fisheries
(Rossig et al., 2004). We have examined the longest high-quality,
directly observed ENSO index time series for insight into ENSO-
related variability and change in these ecosystems and fisheries.

Over the full-record length (137 yr for Darwin) we find that the
trend in Darwin SLP or Troup SOI is not statistically significant. We
also find that the levels of variance seen in recent decades closely
match those seen in some earlier periods, which is consistent with
the SST-reanalysis-based findings of Ray and Giese (2012). Relative
to these ENSO measures and over this century-long period, ENSO
appears to be a stationary but quite “red” phenomenon. The
planetary increase in CO2 over this period does not seem to have
induced any clear changes in ENSO.

However, there is much multi-decadal variability in ENSO.
The middle decades of this period experienced less ENSO varia-
bility than did the early decades and the final decades. And some
decades experienced stronger events than others. We show here
that the amount of multi-decadal energy in the spectrum of
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Table 1
Numbers of positive and negative trends seen in the sliding-window sub-segments
that fit within the full 137 yr Darwin record.

Sub-segment length
(yr)

# positive trends # negative trends

10 263 245
20 234 234
30 207 221
40 180 208
50 166 182

Table A1
Numbers of positive and negative trends seen in the sliding-window sub-segments
that fit within the full 137 yr SOI record.

Sub-segment length
(yr)

# positive trends # negative trends

10 247 261
20 239 229
30 220 208
40 188 200
50 175 173
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Darwin SLP or Troup SOI makes them sufficiently “red” to severely
limit the utility of information from a particular multi-decadal
period (e.g. the satellite era) to project the behavior of subsequent
decades, or to usefully represent the full-record length (137 yr for
Darwin) trend. This suggests that for ecosystems and fisheries
strongly affected by ENSO, projecting future conditions based on a
few recent decades would be unwise.

Broadly speaking, there is a growing interest in examining the
available multi-decadal ecosystem and fishery records for the
effects of long-term climate change (Doney et al., 2012). Our
results illustrate some difficulties involved in such efforts.
We have shown that multi-decadal periods with large trends,
whether positive or negative, often pass stringent tests of trend
significance even though the full-length trend (which in the
Darwin SLP case spans much of the time of rapidly increasing
atmospheric CO2) is not statistically different from zero, even with
the most lenient test we have applied. In most cases, direct
ecosystem and fishery observations are not available over com-
parably long times (Ducklow et al., 2009) so estimating long-term
trends from available records must respect these uncertainties.
As many others have noted (e.g. Wunsch, 1999, and refer-
ences therein), red spectral time series pose very serious challenges
for detecting longer term climate trends. We have shown that the
risk of encountering false-positive results could easily be much
higher than previously realized, even if a careful approach is taken.

It has long been recognized that individual ENSO events exhibit
a range of characteristic anomaly patterns (e.g. Rasmusson and
Carpenter, 1982). In the review process, the recent interest in
classifying some ENSO events (particularly El Niño events) differ-
ently than others for the purposes of identifying ENSO impacts
was raised. In such efforts, it should be recognized that not all
regions that experience ENSO impacts are influenced by ENSO via
the same pathways. In the case of the pelagic tropical Pacific
ecosystem (e.g. tropical Pacific tuna fishery), the effects of ENSO
are closely related to the surface marine variables used to monitor
ENSO state itself (see Introduction). The range of tropical Pacific
surface marine anomalies seen during the individual ENSO events
forms a rather continuous, or Gaussian-like, distribution (Chiodi
and Harrison, 2010; Giese and Ray, 2011). Further, it is not clear
that different mechanisms need to be invoked to explain the range
of SST anomaly behavior seen in the central and eastern tropical
Pacific during recent El Niño events (Harrison and Chiodi, 2009).
In this situation, it is difficult to see the utility of classifying El Niño
events differently for the purposes of identifying their impacts
on the tropical Pacific pelagic ecosystem. In other affected regions,
different situations are possible. Notably, outgoing-longwave-
radiation (OLR) based ENSO indices that have recently been
identified exhibit a unique type of behavior (relative to the
commonly used surface-marine ENSO indices) and a much closer
relationship to ENSO-type atmospheric circulation anomalies over
the North Pacific (among other regions) than is available from the
commonly used ENSO indices. Dynamically, OLR is more closely
linked than SST or SLP to the tropical Pacific atmospheric heating
anomalies that cause ENSO to influence the extra-tropical atmo-
sphere. For ecosystems affected by these extra-tropical anomalies,
using the unique perspective available from observations of OLR
over the tropical Pacific (Chiodi and Harrison, 2013) may prove
directly useful to efforts to identify and predict (especially in the
case of wintertime forecasting efforts) ENSO effects there.

The magnitude of ENSO variability is so strong that it will likely
dominate environmental conditions in the tropical Pacific in the
next few decades, particularly compared to the “climate change”
changes that are projected by most coupled earth system models.
Fishery management decisions will have to be made in a context of
very substantial uncertainty about upcoming environmental con-
ditions with large interannual and decadal variability.
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Appendix A

The complementary figure and table provided in this appendix
are produced by the methods described in the main text, except
based in this case on the Southern Oscillation Index (SOI) rather
than the Darwin SLP record.
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Fig. A1. As in Fig. 5, except for the Southern Oscillation Index (SOI).
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Fig. B1. Shown here are the theoretical spectrum of the ARMA(3,1) model with
coefficients derived from a fit to the 137 yr of Darwin SLP observations (curve “a”),
the mean test-estimated density of variance from the base-case bootstrap test (line “b”),
along with the range of base-case test-estimates (green shading shows the 5th and 95th
percentile; N¼1000) seen in a simulation experiment based on synthetic 50 yr sub-
segments generated by the best-fit ARMA(3,1) model. Line “c” shows the value of the
mean bootstrap test-estimate after being “corrected” (matched to curve “a” at low
frequency). In this “corrected”mode the test returns the correct number of false-positive
results. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Appendix B

This appendix describes the simulation experiment that was
conducted to evaluate the trend statistical significance test per-
formance in a scenario where the actual spectrum and long-term
trend of the (simulated) record in question are both known
perfectly. To do this, we repeatedly generated synthetic sub-
segments using an ARMA(3,1) model run with the parameters
derived from the fit to the full Darwin record, and then tested
these synthetic sub-segments for trend statistical significance.
In this case, the model is stationary and no long-term trend has
been added so an ideal test should find false-positive results
(indicate trend statistical significance) at a rate given by the
nominal confidence interval of the test.

It is useful to illustrate this situation in frequency space. The
spectrum of the ARMA(3,1) simulated 50 yr sub-segments (based
on the same parameters as seen in Fig. 4) as well as the amount of

non-trend variability estimated by the test in its base-case mode is
shown in Fig. B1 (curve “a” and line “b”, respectively). The test-
estimate shown here can be understood as the spectrum of the
modeled variability that the test uses to determine the distribution
of trends misleadingly produced by the non-trend variability. The
critical slope that must be exceeded in order for a best-fit trend to
reach statistical significance is determined from this distribution.

The bootstrap test, due to its reliance on sub-sampling, effec-
tively models a white spectrum, which in this case overestimates
the simulated record0s density of variance at high frequency and
underestimates it at low frequency (the model estimated density
of variance in this case depends on the total variance in the
original record and the estimated value of Tb). That an overly strict
result is seen in the simulation experiment described above is
consistent with the fact that the simulated low-frequency variance
is underestimated by the test (c.f. curve “a” and line “b” in Fig. B1).
Indeed, we find that when the test is modified (original degrees of
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freedom increased by 1/3rd) such that the test-estimated amount
of non-trend variability matches the specified low-frequency
ARMA(3,1) value (c.f. Fig. B1 curve “a” and line “c”), the test then
returns about the correct number of false-positive results in the
simulation experiment (e.g. �5% at 95% confidence, based on
50-yr simulated sub-segments); if the best-fit ARMA(3,1) model
perfectly represents the behavior of Darwin SLP, then the test is
now accurate at this length scale. This modification constitutes the
“corrected” bootstrap test discussed in the main text.

To examine the test performance under different assumptions
about the amounts of low-frequency (non-trend) variability pre-
sent, the estimated degrees of freedom can be adjusted iteratively
such that the test-estimate of low-frequency variability present
spans the desired range of assumptions, that is, the uncertainty
associated with our ability to estimate the spectral density of
variance at low frequency.

The extent of the lowest-frequency uncertainty bar shown in
Fig. 4 gives a conservative estimate of this uncertainty. We find

that when the bootstrap test is modified so that it assumes non-
trend low-frequency variance at the upper limit of this uncertainty
range, the pseudo-false-positive rate for tests conducted at the
nominal 95% confidence level on the actual Darwin sub-segments
ranges from 0 to 5%, depending on the sub-segment length
considered. Assuming the lower limit, the pseudo-false-positive
rate instead ranges from 30 to 45%, or in other words, the test
returns 6 to 9 times too many false-positives.

We have repeated the analysis described here using a Student0s
“t” test as well as an ARMA(3,1) trend-significance test, in which
case the three auto-regressive and one moving-average para-
meters are found from a fit to the individual sub-segments. We
find that the “t” test results (not shown) are very close to (within
1% of) the bootstrap results provided that the same methods for
estimating the number of degrees of freedom are used in each.
This is not surprising since the “t”-test assumption of a normal
distribution is basically consistent with the behavior of the
commonly used ENSO indices (Chiodi and Harrison, 2010). The
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ARMA(3,1) test, however, as discussed in the main test, tends to
yield more statistically significant results than the optimized-
bootstrap test when used in the same scenario. We attribute this
increased tendency for finding statistical significance to the fact
that the range of ARMA(3,1)-estimated low-frequency variability,
which depends on the estimated value of five parameters in the
ARMA(3-1) case, is considerably larger than in the bootstrap case
(shown by the green shading in Fig. B1), which requires only one
estimated parameter (Tb).

We have performed a companion study on SOI, which repli-
cates that described above except that the Darwin record is
replaced by the SOI. The results are shown in Appendix Fig. B2,
and reveal that, like in the Darwin case, the base-case bootstrap
test finds fewer (1 to 4%) statistically significant sub-segment
trends than do the optimized-bootstrap (11–16%) and ARMA(3,1)-
only tests (16–22%). We have confirmed that, as in the Darwin
case, this is because the base-case bootstrap estimates of the
amounts of low-frequency variability contained in SOI tend to
exceed those produced by the optimized-bootstrap and ARMA
(3,1)-only tests (thus making it harder for a given trend to be
found statistically significant).

Using a different selection criteria than Trenberth and Hoar
(1996), Chu and Katz (1985) have previously chosen the ARMA
(3,0) form of model as an optimal fit to SOI. Following Chu and
Katz (1985), we have also repeated the SOI trend statistical
significance analysis discussed above using an ARMA(3,0) rather
than ARMA(3,1) form. The results are shown in Appendix Fig. B3,
and reveal that the choice of model form can have substantial
effects on the ARMA-dependent (i.e. the optimized-bootstrap and
ARMA-only) trend significance test results. Moving from the ARMA
(3,1) to the ARMA(3,0) model in this case substantially reduces (up
to a factor of 4) the number of statistically significant trends that are
found in the ARMA(3,0) case compared with the ARMA(3,1) case
(c.f. Figs. B2 and B3). Comparison of the test-estimated spectra (not
shown, for brevity) reveals that the (non-trend) low-frequency
variance levels assumed by the ARMA(3,0)-test tend to exceed
those of the ARMA(3,1)-test in this case. We have confirmed that
this discrepancy occurs even though both types of ARMA-estimated
SOI spectra fit well within the uncertainty bounds associated with
our ability to determine the amounts of the low-frequency varia-
bility in ENSO (e.g. Fig. 4). This underscores the importance that
seemingly small changes in the assumed amounts of non-trend
low-frequency variability can have on test outcomes.
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