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Abstract The tropical Pacific is a major natural source of CO2 to the atmosphere and contributor to
global air‐sea carbon flux variability. High time‐resolution wind and CO2 measurements from equatorial
Pacific moorings reveal the primary factor controlling mooring‐observed flux variability to be near‐surface
wind variability, above CO2 variability, in this region over the last 10 years. The analysis product winds used
most widely in previous calculations of basin‐scale carbon flux are compared with mooring winds and
found to exhibit significant differences in mean, variability, and trend. Earth system model calculations are
in basic agreement with the mooring results and used to estimate effects of wind uncertainty on our
knowledge of regional air‐sea carbon exchange. Results show that NCEP1 and NCEP2 winds contain biases
large enough to obscure the interannual variability of CO2 flux (RMSE ≈ σ) and cause spurious 25‐year
(1992–2016) trend components in equatorial Pacific carbon flux of 0.038–0.039 and 0.016–0.021 Pg C yr−1 per
decade, respectively. These spurious trends act to reduce by up to 50% the 25‐year trend in equatorial Pacific
carbon flux simulated by the Earth system model under increasing atmospheric CO2 concentration. The
Cross‐Calibrated‐Multi‐Platform wind product tracks observed variability of equatorial Pacific wind better
(interannual RMSE ≈ 0.4σ) than the NCEP reanalyses when site sampled at mooring locations yet still
causes a spurious regional trend (0.03 Pg C yr−1 per decade) that masks 40% of the simulated 25‐year trend in
carbon flux. The mooring observations are fundamental to identifying the limitations of current wind
products to characterizing long‐term trends and understanding air‐sea carbon exchange.

Plain Language Summary The tropical Pacific Ocean stands out as a significant natural source
of carbon to the atmosphere—even rivaling U.S. emissions. Knowing how this source has changed over
recent decades and how it might change in coming decades is important to understanding and predicting net
oceanic carbon uptake. Estimates of the effect that changes in the wind have had on regional air‐sea carbon
exchange depend strongly on the wind analysis used. Direct wind observations from the array of
approximately 70 moored buoys spanning the tropical Pacific are critical to our ability to monitor the system
for long‐term trend.

1. Introduction

The variability in space and time of the air‐sea flux of carbon dioxide (CO2) is an important part of the
coupled climate‐carbon system. Of particular interest are the extent to which the net oceanic carbon uptake
has changed over recent years and how it might change in coming decades. At present, the net oceanic
uptake is estimated to be about 2.4 Pg C yr−1 or 25% of the carbon emissions from fossil fuel burning and
industrial activity (Le Quéré et al., 2018; carbon budget). The extent to which different regions contribute
is also of interest. Uptake of carbon through the ocean surface is thought to occur largely over the
Southern Ocean (south of 35°S), with substantial contribution also from the North Pacific and North
Atlantic in boreal winter (Takahashi et al., 2009). The tropical Pacific, wherein relatively carbon‐rich water
is brought to the surface through upwelling in the equatorial region and along the South American coast, is
known to provide a counteracting source of carbon to the atmosphere. Equatorial Pacific carbon flux has
been estimated to be near +0.5 Pg C yr−1 (positive = upward) by Takahashi et al. (2009) and +0.4 Pg C yr−1

by Ishii et al. (2014), contributions that equate to approximately one third of recent U.S. emissions from fossil
fuels, which was estimated as 1.4 Pg C yr−1 over 2014 by Boden et al. (2017).
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One challenge confronting assessment of long‐term carbon uptake is interannual variability. The tropical
Pacific has been estimated to have large interannual variability of air‐sea carbon flux that is thought to
contribute substantially to the global interannual variability of air‐sea carbon flux (Feely et al., 2002,
2006; Park et al., 2010). Global interannual surface flux variability was estimated recently to have had
a standard deviation of 0.2 Pg C yr−1 over the period 1990–2009 by Wanninkhof et al. (2013) and 0.31
Pg C yr−1 over 1992–2009 by Rödenbeck et al. (2015). The uptake of carbon by the ocean is also thought
to have increased over recent decades, but the estimated magnitude of increase varies widely depending
on the method used to estimate it. For example, Wanninkhof et al. (2013) reported decadal ocean uptake
increases that ranged by a factor of 4, from 0.13 to 0.5 Pg C yr−1 per decade, depending on the methodo-
logical approach across forced biogeochemical ocean model simulations of air‐sea carbon flux, inference
of air‐sea carbon flux based on observed interior ocean carbon inventories and forced ocean model‐
simulated ocean circulations (a.k.a. ocean inversions), atmospheric inversions based on atmospheric
circulation estimates and measured atmospheric carbon concentrations, and empirical estimation of air‐
sea carbon flux based on measurements of surface ocean and near‐surface atmospheric carbon concentra-
tions and wind.

Our ability to estimate air‐sea carbon flux has benefited greatly from progress made over recent decades in
collection of oceanic carbon observations from ships of opportunity, research vessels, moorings, and drifting
buoys. Unfortunately, the available direct observations of carbon concentrations in most regions of the glo-
bal ocean remain sparse in space and time (Bakker et al., 2016). Estimating global air‐sea carbon flux from
the available ocean surface carbon observations currently requires synthesizing basin‐wide near‐surface
ocean CO2 concentration or partial pressure (pCO2sw) fields based on the available carbon data and other
sources of information, including statistical relationships between pCO2sw and other surface marine vari-
ables that are more widely measured (e.g., most of the pCO2 products discussed by Rödenbeck et al.,
2015). Approaches focusing on the relationship between sea surface temperature and pCO2sw variability
have been developed and used now for several decades to estimate basin‐wide surface ocean pCO2 variability
in the tropical Pacific as inferred through the surface temperature variability (e.g., Feely et al., 2006; Park
et al., 2010). Full‐field estimation of air‐sea carbon flux also requires gap‐filling synthesis of the available
measurements of the atmospheric partial pressure of CO2 (pCO2a). Estimating the time‐varying zonal mean
of pCO2a from available land surface, land tower, aircraft, and ship pCO2a sampling (GLOBALVIEW‐CO2,
2011), as well as atmospheric inversion techniques (e.g., Rödenbeck et al., 2015), have been used to produce
gap‐filled gridded pCO2a fields.

Where the necessary carbon observations or syntheses are available, air‐sea carbon flux (F) is commonly
estimated using the bulk formula:

F ¼ k×KS×ΔpCO2; (1)

so that F is dependent on ΔpCO2, the interfacial difference between the partial pressure (or fugacity,
which is similar to partial pressure but corrects for gas nonideality) of CO2 in the near‐surface seawater
and overlying air (ΔpCO2 = pCO2sw − pCO2a); Ks, the temperature and salinity‐dependent solubility of
CO2, which is popularly calculated based on the formulation of Weiss (1974); and the gas transfer velocity
(k), a.k.a. piston velocity, thought to depend upon wind stress and associated near‐surface turbulence,
ocean waves, and bubble injection, surface‐surfactant conditions, as well as temperature and near‐surface
humidity (Blomquist et al., 2017; Nightingale et al., 2000; Wanninkhof et al., 2013, and references
therein). Because wind variability plays a role in driving the relevant changes in many of these contribut-
ing variables (e.g., turbulence and bubble injection) and is much more widely measured than several of
the other variables (e.g., bubble injection and surface surfactants), the gas transfer velocity, k, has typi-
cally been parameterized as a function of near‐surface wind speed, with linear (Smethie et al., 1985), pie-
cewise linear (Liss & Merlivat, 1986), combination linear‐quadratic (e.g., Nightingale et al., 2000),
quadratic (e.g., Ho et al., 2006; Wanninkhof et al., 2013), and cubic (McGillis et al., 2001) forms all having
been suggested and used previously (see Boutin et al., 2002, and Otero et al., 2013, for regional compar-
isons). Recent studies of basin‐scale carbon flux (e.g., Ishii et al., 2014; Park et al., 2010; Rödenbeck et al.,
2015; Takahashi et al., 2009; Wanninkhof et al., 2013) have tended to parameterize gas transfer velocity
using the form
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k ¼ k660×U
P× 660=Scð Þn; (2)

wherein k660 is constant over space and time, n is assumed to be 0.5 (Wanninkhof, 1992), p is assumed to
equal 2 (quadratic wind speed dependence), and U2 is the square of wind speed at 10‐m height. Typically,
U2 is calculated based on measurements of U (mean wind speed) obtained over some averaging interval.
The wind‐time‐averaging scales used in previous carbon flux studies range from climatological long‐term
averages (e.g., Wanninkhof, 1992), in which case other sources of information must be relied upon to adjust
for the nonlinear effects of unresolved U variability on U2, down to wind measurements over a few minutes
or less (e.g., Fassbender et al., 2017; Ho et al., 2006; Sutton et al., 2017; Wanninkhof, 2014), in which case it
has been determined or assumed that no such nonlinear adjustment is needed. The value 660 corresponds to
the Schmidt number of CO2 in seawater. Although the n = 0.5 Schmidt number term (660/Sc)0.5 in equa-
tion (2) and CO2 solubility (Ks) term in equation (1) vary substantially with temperature, the product
(660/Sc)0.5 × Ks that results when equation (2) is used in equation (1) with n = 0.5 is relatively insensitive
to temperature change. For example, the climatological sea surface temperature range in the eastern equa-
torial Pacific, which varies from approximately 22 °C in boreal autumn to 27 °C in spring, produces changes
in Ks of ~12%, but only <1% in the product (660/Sc)−0.5 × Ks. Thus, the primary potential sources of varia-
bility in the commonly used quadratic air‐sea carbon flux parameterization (F in equation (1), with p = 2
and n = 0.5 in equation (2)) are the square of near‐surface wind speed (U2) and the near‐surface ocean‐to‐
air partial pressure (or fugacity) difference of CO2 (ΔpCO2).

Direct measurements of air‐sea carbon flux based on the eddy‐covariance approach (Blomquist et al., 2017;
see also McGillis et al., 2001) found that using the parameters k660 = 0.96 and p = 1.68 in equation (2) pro-
vided the best fit to their eddy‐covariance flux measurements made in 10‐m wind speeds ranging from ~2
to 25 m/s in the North Atlantic. These eddy‐covariance results showed substantial spread at a given wind
speed, however, which may be attributable to gas flux dependencies on factors other than wind speed and
methodological uncertainties. Parameterizations based on direct flux measurements such as these serve as
a reminder of the uncertainties involved in parameterizing k as a function of wind speed. A more common
approach has been to infer k660 based on knowledge of global winds, the time history of atmospheric
bomb‐C14 gas concentration, and the rate of change of the oceanic concentration (e.g., Naegler, 2009;
Sweeney et al., 2007; Wanninkhof, 1992, 2014; Wanninkhof et al., 2013). Dedicated dual tracer experiments,
such as the 3HE/SF6 injection experiments described by Ho et al. (2006; see also Nightingale et al., 2000), pro-
vide anothermeans of estimating k as a function of wind speed. Recently, Roobaert et al. (2018) examined the
effects of adjusting k660 according to the analysis product used for wind information such that the product
k660 × U2 retained a similar global and time mean among different wind analyses. Roobaert et al. (2018)
found substantial uncertainty in regional air‐sea carbon flux remained over the equatorial Pacific, North
Atlantic, and Southern Ocean even after making these adjustments, demonstrating the importance of accu-
rate wind knowledge for estimating flux over these regions. Among the more recent dual‐tracer and C14‐

based studies, the value decided upon for k660 varies somewhat (e.g., Ho et al., 2006 suggest
k660 = 2.79 ± 0.02; Wanninkhof, 2014; Wanninkhof et al., 2013, report a best fit of k660 = 2.51), but the
p = 2 assumption is used in each case.

To apply the flux parameterization described by equations (1) and (2) to estimate basin‐scale air‐sea carbon
flux variability (or to use the bomb‐C14 approach to deduce k660), accurate knowledge of U

2 over the global
ocean is required. Direct wind measurements in the marine boundary layer are available from ships and
moored buoys. Wind speeds have been remotely sensed by satellite‐based scatterometer and radiometer
instruments over the past several decades. Complete direct measurement of the surface wind field across
the globe, however, remains—like complete pCO2 sampling—a goal for the future. The task of producing
a full wind field over the ocean surface thus depends upon synthesizing the available measurements, or sub-
sets of these measurements, into full wind fields, that is, gap filling across space and time. Numerical
weather models run in data assimilation mode have become a popular means to produce full, regularly
gridded wind fields. These reanalysis products provide wind fields on subdaily timescales (most products
used in recent carbon exchange studies have 6‐hr resolution) and have been commonly used in contempor-
ary carbon flux studies. For example, Rödenbeck et al. (2015) used the winds produced by the NCEP/NCAR
Reanalysis 1 (NCEP1 hereafter) and Takahashi et al. (2009) and Park et al. (2010) used the modified NCEP‐
DOE Reanalysis 2 (NCEP2 hereafter) for knowledge of global wind variability.
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To understand the uncertainties with flux calculations like these, it is important to characterize the limita-
tions of analyzed wind products (Bates & Merlivat, 2001; Wallcraft et al., 2009). Comparison with high‐
quality direct measurements of wind speed and direction offers a basis for doing this. Chiodi and Harrison
(2017a, 2017b), for example, looked in detail at how well the wind and wind stress information contained
in the NCEP1 and NCEP2 reanalyses agreed with the observations provided by the tropical Pacific moored
buoy array (a.k.a. TAO/TRITON), which spans the equatorial Pacific with buoy spacing set to match the
observed zonal and meridional coherence length scales of the winds (Harrison & Luther, 1990). They found
substantial biases in NCEP1, NCEP2, and the more recent ERA‐Interim (Dee et al., 2011) reanalysis wind
products over this region.

In addition to reanalysis wind products like NCEP1, NCEP2, and ERA‐Interim, the Cross‐Calibration Multi‐
Platform (CCMP; Atlas et al., 2011) wind product has also been used in global carbon studies (e.g.,
Wanninkhof, 2014; Wanninkhof et al., 2013; Wanninkhof & Triñanes, 2017; Ishii et al., 2014). The CCMP
product assimilates mooring and satellite‐based estimates of near‐surface winds, which are derived from
measurements of backscattered microwave radiation over the ocean surface. Direct measurement of winds
coincident in time and space with the backscatter signal is necessary for calibrating the satellite backscatter
to estimates of vector winds. The CCMP product also depends on a first‐guess or background wind field. In
the first CCMP version (CCMP1), the NCEP2 near‐surface wind product was used as background informa-
tion for assimilation of the available satellite winds. In the second version (CCMP2), ERA‐Interim, which
itself assimilates many of the satellite products used in the CCMP approach, was used. The mean and trend
biases in the tropical Pacific winds in CCMP1 and CCMP2 were evaluated relative to the daily averaged
TAO/TRITON wind observations by McGregor et al. (2017) and found to depend on the choice of back-
ground wind field. CCMP, like NCEP1 and NCEP2, is available on a 6‐hr time grid, which was suggested
by Wanninkhof (2014), in consideration of the CCMP case, to be sufficiently high in resolution to resolve
the timescales of wind variability relevant to the nonlinear U dependence of the bulk gas flux
parameterization (equation (1)).

Ocean general circulation models that include carbon chemistry along with basic upper ocean biology (e.g.,
phytoplankton, zooplankton, detritus, and nutrient interaction) have also been developed to simulate the
coupled interaction between ocean physics and biogeochemical processes when forced with information
about the surface exchanges of heat, momentum, fresh water, gases, and nutrients (or some combination
thereof). The simulation of air‐sea carbon flux in ocean biogeochemical models typically uses the same form
of gas flux parameterization described above (e.g., Orr et al., 2017) and is therefore also reliant on near‐
surface atmospheric pCO2 and wind speed. This atmospheric information has been prescribed based on
observational syntheses in forced biogeochemical ocean simulation experiments (e.g., Aumont & Bopp,
2006; Doney et al., 2009; Le Quéré et al., 2010; McKinley et al., 2004; Sarmiento et al., 2010) and, alterna-
tively, by coupling biogeochemical ocean models to atmosphere, sea ice, and land‐carbon models in state‐
of‐the‐art Earth System Models (ESMs; e.g., Dunne et al., 2012, 2013; Lovenduski et al., 2016; Law et al.,
2017). Models offer dynamically consistent sets of wind and ΔpCO2 fields and can be useful for interpreting
and synthesizing observations and understanding the processes controlling observed carbon system variabil-
ity. Models are only approximations, however, and must be evaluated against accurate observations on rele-
vant space and time scales before their relevance to real‐world processes can be assessed.

Fortunately, for more than a decade, surface moorings in the equatorial Pacific have supplied the accurate
observations of wind and the carbon system to compute the various terms in equations (1) and (2) directly.
Because of the coverage and duration of observation of air‐sea carbon flux from the equatorial Pacific, as well
as its substantial influence on global levels of air‐sea carbon flux and flux variability, we focus here on exam-
ining the impacts that uncertainty in our knowledge of the winds has on our ability to estimate air‐sea CO2

flux from this region and assess control by ΔpCO2 and wind on the measured flux variability in the
equatorial Pacific.

In addition to the direct measurements of pCO2 from seven moorings located in the equatorial Pacific, we
also exploit winds measured by the full tropical Pacific mooring array to better understand wind uncertainty
impacts on regional carbon flux. This array is composed of nearly 70 moorings spanning the basin from
137°E to 95°W and 8° or 9°N to 8°S. The winds from the mooring array can be used to assess the mean, varia-
bility, and 25‐year trend biases in the commonly used analyzed wind products. To estimate the impacts that
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these regional wind uncertainties and biases have on our ability to deter-
mine regional air‐sea carbon flux and flux variability, we additionally
exploit the pCO2 fields simulated by an ESM integrated with realistically

increasing atmospheric CO2 concentration that reproduces 1992–2016

average equatorial Pacific air‐sea CO2 flux within the range of

observation‐based estimates listed above (0.4–0.5 Pg C yr−1). Our results
reveal substantial biases among the analyzed product winds and resultant
fluxes and highlight the importance that the mooring winds play in iden-
tifying and potentially constraining wind uncertainty effects on air‐sea
carbon flux over this highly wind‐sensitive region.

2. Data Sets and Methods
2.1. Carbon Moorings

Surface seawater and near‐surface atmospheric pCO2 measurements in
the equatorial Pacific were provided by seven moorings equipped with

autonomous pCO2 (MAPCO2, 2017; Sutton et al., 2014) systems that make 3‐hourly measurements of
near‐sea surface (~0.5‐m depth) and atmospheric (~1.5 m above surface) mole fractions of CO2, along with
sea surface temperature, salinity, and sea level pressure (last accessed April 2018). Data from four other
MAPCO2 systems deployed in the Pacific but outside of the equatorial regions (see Fassbender et al.,
2017; Sutton et al., 2017) were also analyzed to offer an observational point of comparison to the rather
unique air‐sea CO2 flux behavior observed over the equatorial Pacific (as discussed in section 3.1). The start
date (range 2004–2010) and amount of the MAPCO2 pCO2 measurements used depend on the availability at
each site and are summarized in Table 1.

2.2. Moored Buoy Winds

Our main source of observational wind information over the equatorial Pacific is provided by the tropical
Pacific moored buoy array (TAO, 1992), which consists of ~70 buoys (only a small subset is currently
MAPCO2‐equipped) spanning the width of the Pacific Ocean basin with 10°–15° longitude spacing in the
east‐west direction and 2°–3° latitude spacing in the north‐south direction from 8°S to 8° or 9°N. This spacing
was designed to match the observed coherence scales of equatorial Pacific wind variability on multiday and
longer timescales, meaning that the array provides adequate knowledge of the regional wind variability when
all or nearly all buoys are reporting (Luther &Harrison, 1984). Based on forced oceanmodel experiments over
the 1992–2011 period, Chiodi and Harrison (2017a) confirmed that this observing system design works as it
was designed for providing wind knowledge necessary to adequately simulate the observed sea surface tem-
perature anomaly development associated with the development of El Niño‐Southern Oscillation events.
Data return from the array first reached 60% over the Pacific Ocean waveguide in 1992, which is the first year
of moored wind observations used herein. Moorings typically measure winds at 3.5 to 4 m above the sea sur-
face. Thus, either they or the 10‐mwind estimates produced by the reanalyses and satellite analyses must be
adjusted in height to facilitate cross‐platform comparison. Here we adjusted the mooring winds to 10‐m
height assuming neutral atmospheric stability (as also done in Sutton et al., 2017) and using a logarithmic
height adjustment approach (as inMears et al., 2001), which equates, in the case of typical 4‐mmooring wind
measurements and 1.52 × 10−4‐moceanic surface roughness length (Peixoto&Oort, 1992), tomultiplying the
mooring wind speed observations by 1.09 (a 9% increase adjusting from 4‐ to 10‐m winds).

We also analyzed mooring winds from the TAO/Triton subset of observations adjusted to 10‐m height based
on the COARE 3.0b parameterization (Cronin et al., 2006; Fairall et al., 2003) made available by the TAO
Project office at www.pmel.noaa.gov/tao/oceansites/flux/main.html. We have compared 10‐m wind speed
squared based on each of these two approaches and found similar results (e.g., time‐averaged wind speed
squared at 140°W, 0°N differs by <0.01%). While we expect 10‐mwind speeds from the TAO/Triton observa-
tions and COARE 3.0b parameterization to also provide accurate information when available, there are con-
siderable gaps in the COARE case caused by the absence of the other meteorological observations necessary
for implementing COARE 3.0b. For this reason, we herein rely on TAO/Triton wind observations and the
logarithmic adjustment listed above for 10‐m wind information.

Table 1
Start Month of MAPCO2 pCO2 Measurements Along With the Number of
Days of Finalized 3‐Hourly ΔpCO2 Data Available Used in This Study

MAPCO2 site Start Days

Papa (145°W, 50°N) Jul 2007 1,773
KEO (145°E, 32°N) Sep 2007 1,925
WHOTS (158°W, 23°N) Jun 2007 1,847

TAO 165°E, 8°S Jun 2009 751

TAO 165°E, 0°N Feb 2010 396

TAO 170°W, 0°N Jul 2005 1,500

TAO 155°W, 0°N Jun 2005 704

TAO 140°W, 0°N May 2004 1,883

TAO 125°W, 0°N Mar 2005 2,106

TAO 110°W, 0°N Sep 2009 1,066

Stratus (85°W, 20°S) Oct 2006 2,517
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For the comparisons discussed below, in order to estimate gas transfer velocity, we first calculated wind
speed squared (U2) values from the available high‐frequency wind speed observations provided by the buoys.
The high‐frequency averaging interval is 10 min for the buoys including and east of the 165°E line and 1 hr
for the buoys farther west (the TRITON part of the array). We then averaged these high‐frequencyU2 values
onto the time grid of the respective companion time series (3‐hr MAPCO2 ΔpCO2 observations or 6‐hr ana-
lysis product winds). For the mooring observations, we use the k660 value of 2.71, suggested by Ho et al.
(2006) and previously used for mooring flux estimation by Fassbender et al. (2017). The Wanninkhof et al.
(2013) value of 2.51 could be chosen instead without qualitatively affecting our results; for example, the
change in the 1992–2016 mean and 25‐year trend in regional CO2 flux contributed by a given data set's wind
biases would remain the same, as a fraction of the total unbiased amount, regardless of which k660 value
was used.

2.3. Analyzed Wind Products

Wealso use surfacewind estimates from two numerical weathermodels run in data assimilationmode, aswell
as a pair (versions 1 and 2) of satellite reanalysis wind products. These are the NCEP/NCAR Reanalysis 1
(NCEP1:, 1996) described by Kalnay et al. (1996; 6‐hourly and 2.5° latitude × 2.5° longitude resolution), the
NCEP‐DOEReanalysis 2 (NCEP2:, 2002) described by Kanamitsu et al. (2002; 6‐hourly and 2.5° × 2.5° resolu-
tion), and the CCMP satellite reanalysis wind synthesis described by Atlas et al. (2011; 6‐hourly and
0.25° × 0.25° resolution). CCMP's version 1 (CCMP1, 2017) used NCEP2 for background wind information
and is available only until 2011. CCMP version 2 (CCMP2, 2017) uses ERA‐Interim 10‐mwinds as background
and is available over our full study period (1992–2016 for wind observations). Wind speed squared (U2) infor-
mation was calculated from the NCEP1, NCEP2, CCMP1, and CCMP2 6‐hourly averaged near‐surface winds,
which are nominally representative of the wind conditions at 10‐m height. We chose these products for con-
sideration here based on their recent use in large‐scale carbon flux studies (as described in section 1).

We calculate comparison statistics between the mooring winds and the analysis product wind fields using
two methods whose 25‐year trend characteristics we compare in section 6. In the first method, the analyzed
wind fields were subsampled at each buoy site using linear interpolation in the meridional and zonal direc-
tion from the four reanalysis grid point values nearest the location of the buoy. This method mimics the
effect of imaginarily placing buoys in the reanalysis field. This method is referred to as buoy site sampling,
hereafter, and has similarly been referred to as spot sampling previously (Wanninkhof & Triñanes, 2017). In
the second method, we sample the analyzed wind fields by averaging them over rectangular regions drawn
around the available buoy locations, with zonal and meridional bounds spaced equidistant from adjacent
buoy locations, that is, averaging over boxes spanning 2°–3° in the meridional and 10°–15° in the zonal
direction. This method is referred to as the buoy box‐averaging method.

2.4. Earth System Model Data

Simulated fields of pCO2a, pCO2sw, U
2, and air‐sea carbon flux were obtained from NOAA's Geophysical

Fluid Dynamics Laboratory (GFDL) ESM 2G (2017), a state‐of‐the‐art coupled carbon‐climate Earth
System Model (Dunne et al., 2012, 2013), which participated in the CMIP5 project (Taylor et al., 2012). As
employed here, ESM 2G is integrated with a prognostic atmospheric CO2 tracer restored with an annual
timescale at all atmospheric levels to the preindustrial reference value of 286 ppmv during the model
spin‐up and then to historical (1861–2005) and RCP8.5 Scenario (2006–2100) forcing for CMIP5 (Taylor
et al., 2012).This relatively gentle annual restoring allows the prognostic atmospheric CO2 to retain atmo-
spheric pCO2 regional and temporal variability on subannual timescales for comparability to
observational timescales.

The ocean component, Generalized Ocean Layer Dynamics (Hallberg, 1995), uses a 1° horizontal grid
increasing to ⅓° meridionally at the equator, and 63 vertical levels, including two mixed layers (Hallberg,
2003; Thompson et al., 2003), two buffer layers, and 59 interior layers. The ocean biogeochemical and eco-
logical component is Tracers of Ocean Phytoplankton with Allometric Zooplankton code version 2.0
(TOPAZ2; Dunne et al., 2010; Henson et al., 2009) with 30 tracers representing various biogeochemical
cycles, including carbon, nitrogen, phosphorus, alkalinity, iron, and surface sediment CaCO3 (Dunne
et al., 2012). Carbon is cycled through the atmosphere, ocean, and land in GFDL‐ESM 2G. TOPAZ2 includes
three explicit phytoplankton groups with modified growth physiology (Geider et al., 1997) and size‐based
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relationship of production and loss (Dunne et al., 2005). Alkalinity and dissolved inorganic carbon are initi-
alized from the Global Ocean Data Analysis Project (Key et al., 2004). The air‐sea carbon flux, ΔpCO2, and
wind speed from the model are calculated initially from 3‐hourly model output and then saved at daily reso-
lution to facilitate the analyses described in sections 3 and 4. Themodeled wind speed squared, in terms of its
buoy‐sampled average over the equatorial Pacific (~40 m2/s2) and spatial structure of the mean across the
equatorial Pacific, including enhancements over the easterly trade wind regime in the central equatorial
Pacific (not shown for brevity), is qualitatively consistent with TAO/Triton observations, which exhibit a
regional and time mean of ~44 m2/s2.

3. Results
3.1. Wind Versus ΔpCO2 Control on Flux Variability

The air‐sea carbon partial pressure difference (ΔpCO₂) and the wind speed squared (U2) term in the com-
monly used quadratic bulk CO2 flux parameterization (equations (1) and (2)) are the primary candidates
for driving variability in air‐sea CO₂ flux. We begin by examining the MAPCO2 carbon and mooring wind
observations for the relative extent to which changes in the observed ΔpCO2 and U2 time series control
the variability of air‐sea CO2 flux at each MAPCO2 site. To evaluate the relative ΔpCO2 and U2 controls
on flux variability, we examine the RMSE between our base‐case calculation of the flux (based on 3‐hourly
observations of ΔpCO2 and high‐frequency U2 observations) and component calculations of flux variability
performed alternately withU2 orΔpCO2 terms constant at their study period mean. Primary control over the
flux variability by one or the other of these variables is thereby revealed when the RMSE produced by omit-
ting one (dominant) component of variability substantially exceeds the RMSE produced by omitting the
variability contributed by omitting the other (secondary) component. Stated alternatively, if the variability
of the calculated flux does not change much even after one of these variables is replaced by its time mean,
then that component contributes little flux variability.

Figure 1 illustrates this situation for the case of the MAPCO2‐equipped mooring at 125°W, 0°N. This site
offers approximately 13,500 3‐hourly pairs of direct pCO2 and wind observations over the study period
(~40% data return, period 2005–2016) and is located in the heart of the upwelling‐influenced cold‐tongue
region of the equatorial Pacific.

The CO2 flux estimated by direct wind and carbon observations at this site remained positive (net CO2 trans-
port from ocean to atmosphere) over all times for which data are available and has a mean over the period
shown of 8.3 × 10−8 mol · m−2 s−1. To highlight variability at subseasonal and longer timescales, the flux is
shown in this case at monthly averaged resolution (black curves in Figure 1). Over the September–October
2009 and 2012 portions of the time series shown in Figure 1, the high‐frequency (10‐min) wind data were not
available even though daily averaged wind data were available. Rather than leave these two portions of the
figure blank, we filled themwith the result of calculating CO2 flux based on the available daily average winds
after adjusting for the effects of neglecting the subdaily contribution to U2. This adjustment was estimated
based on the average difference between U2 calculated from daily and high‐frequency winds over the adja-
cent years for which they were both available and equated to increasing the flux based on daily averaged
winds by 5.4%. This was done for illustrative purposes. The mooring‐based calculation results described
hereafter are all based on the available high‐frequency wind observations.

The monthly averaged flux standard deviation at this site is 2.8 × 10−8 mol · m−2 s−1. Recalculating the
monthly averaged flux after removing the carbon system variability (i.e., holding ΔpCO2 constant; light
green curve in Figure 1 upper panel) introduces an RMSE in flux that is half as large as the standard devia-
tion of the base case shown in Figure 1. We repeated this calculation using daily, rather than monthly,
averages of flux and found qualitatively similar results; although the base‐case flux standard deviation is sub-
stantially larger at a daily (4.2 × 10−8 mol · m−2 s−1) than monthly timescale, reflecting the considerable
amount of flux variability revealed at synoptic and shorter timescales by the MAPCO2 systems, the error
introduced by holding ΔpCO2 constant increases proportionally moving from monthly to daily averages
such that the RMSE to standard deviation ratio is nearly the same regardless of whether daily or monthly
averages are used (RMSE/σ = 0.50 and 0.51, respectively in this case). Discrepancies between the
constant‐carbon and base‐case flux time series are evident in each year for which there are observations
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available (cf. black and light green curves in upper panel of Figure 1). These discrepancies highlight intervals
in which ΔpCO2 variability contributes to air‐sea carbon flux at this site. The base‐case flux variability,
however, is approximated with useful accuracy even after the carbon system variability has been
removed: ΔpCO2 is not the main source of observed flux variability at this location.

On the other hand, removing wind variability effects by holding U2 constant at its mean produces a RMSE
that equals the base‐case flux standard deviation (RMSE/σ ~ 1 for both the daily andmonthly averaged case).
The air‐sea carbon flux variability at this site is dominated by variability in the near‐surface winds over the
time for which the observations are available.

To quantify the relative control of wind and carbon variability on CO2 flux, we introduce a flux variability
metric (Rfv) defined as the ratio of the wind speed squared‐associated RMSE (RMSEU) and carbon partial
pressure differential‐associated RMSE (RMSEC):

Rfv ¼ RMSEU=RMSEC:

Values ofRfv near unity signify balanced control of theflux variability between carbon andwind contributions,
whereas values substantially greater than 1 indicate primary control by the wind speed squared and values
substantially lower than 1 by the carbon partial pressure differential. For the case presented in Figure 1, Rfv
based on monthly averaged time series (as shown) is 2.3. Rfv based on daily averages of flux (not shown for
figure clarity) is qualitatively similar (2.1), indicating wind control on flux variability in either case.

Rfv values for each of the seven other equatorial Pacific MAPCO2 equipped buoys, as well as four moorings
outside of the equatorial region, were computed based on daily averaged flux time series (themselves calcu-
lated based on 10‐min winds and 3‐hourly pCO2 values) and illustrated by filled circles in Figure 1. Daily
rather than monthly averages of carbon flux were used in this case because gaps in the records from some
of these moorings prohibit many full monthly averages from being calculated (especially 165°E, 0°N).
Comparison of the equatorial and nonequatorial mooring results reveals a basic pattern characterized by
primarily wind‐controlled flux variability in the equatorial, and especially central equatorial region, but
generally stronger carbon control of the flux variability outside of the equatorial region.

We also calculated Rfv based on the simulation of U2, ΔpCO2, and air‐sea CO2 flux from ESM 2G (field
shown in Figure 2). We used daily averages of the simulated time series in this case, which we sampled

Figure 1. Monthly averaged air‐sea carbon flux based on the available 3‐hourly mooring observations of ΔpCO2 and
winds at 125°W, 0°N (black curves). Positive values indicate a source of CO2 to the atmosphere (net flux is from sea to
air). Upper panel shows the result of holding ΔpCO2 constant at its mean (i.e., removing effects of carbon variability) in
light green: Most of the variability seen in the raw case remains intact in this case. Lower panel shows the result of holding
U2 constant (removing effects of wind variability) in light blue. In this case the amplitude of the error introduced
equals that of the actual signal. Wind speed provides the main control on CO2 flux at this site, over the directly observed
period.
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over a period chosen to match that over which the direct observations are
available (2006–2016). The ESM results are in semiquantitative agreement
with the available mooring results. Both sets of results agree that wind
variability mainly controls the flux variability over most of the
equatorial Pacific. Outside of the equatorial region, the MAPCO2 results
reveal Rfv values ranging from nearly 1.0 to 0.49, and the model results
match the character (i.e., degree to which they are above, near, or below
unity) of the mooring results.

3.2. Wind Speed Uncertainty Effects on CO2 Flux at the MAPCO2
Buoy Sites

Results from the previous section highlight the importance of having
accurate knowledge of both near‐surface wind and pCO2 to accurately
estimate and understand equatorial Pacific CO2 flux variability. In this
section, we examine the biases introduced in daily averaged air‐sea CO2

flux variability when the buoy‐observed winds are substituted for winds
site sampled from the analyzed wind products that have most commonly
been used in recent carbon flux studies (NCEP1, NCEP2, and CCMP; in
this case we use CCMP2 because CCMP1 is not available past 2011).

The noise‐to‐signal ratios associated with replacing the buoy winds with
site‐sampled (i.e., mimicking observations from an imaginary buoy

placed in the reanalysis wind field) analysis product winds are listed in Table 2 for each of the 11 Pacific
mooring sites considered. The noise metric used in this case is the RMSE in carbon flux produced by sub-
stituting in the analysis product winds for the base‐case mooring winds. The signal metric is the standard
deviation of the base‐case flux time series (σ). To produce the values listed in Table 2, the analyses winds
were interpolated from their native 6‐hourly resolution to the 3‐hourly MAPCO2 time grid to calculate
fluxes. Then RMSE/σ was calculated based on the respective (mooring and analysis‐based) daily averaged
carbon flux.

Comparison of the equatorial (TAO) moorings with those located elsewhere in the Pacific reveals that the
relative impacts of the uncertainty associated with the analysis winds on flux are, on average, larger in the

equatorial region than elsewhere. For example, the mean noise‐to‐signal
ratio produced by substituting‐in NCEP2 U2 information is 0.81 averaged
over the seven TAO‐MAPCO2 moorings but about one third less (0.53)
averaged over the four nonequatorial Pacific moorings. This difference
is statistically significant at the 99% confidence interval based on Monte
Carlo subsampling, with replacement, of the respective TAO and non‐
TAO values in the NCEP2 column of Table 2. This equatorial to nonequa-
torial difference is even more striking based on the other two wind
products, with CCMP2 introducing equatorial region errors that are
roughly twice, and NCEP1 3 times as large as the nonequatorial errors.
This relatively high sensitivity to wind uncertainty over the equatorial
region is consistent with the findings from section 3.1 that identified wind
variability as the main control on the flux variability over this region.

The uncertainties associated with the three wind products considered,
however, differ substantially from one another. In the NCEP1 and
NCEP2 cases, the noise introduced at each equatorial mooring site
approaches the signal (RMSE/σ near 1). We repeated this calculation after
averaging the respective flux time series to monthly mean resolution and
confirmed that noise to signal remains qualitatively similar (signal‐to‐
noise ratio = 1) over the equatorial region using NCEP1 or NCEP2.
CCMP2 (at daily or monthly resolution) offers a substantially improved
noise‐to‐signal ratio relative to these two reanalyses.

Figure 2. The ratio of the RMSE introduced by holding U2 constant in the
bulk parametrization calculation of air‐sea carbon flux, over the RMSE
introduced by holding ΔpCO2 constant. Filled circles show results based on
MAPCO2 carbon and mooring wind observations. Broader field shows
results based on GFDL's ESM 2G.

Table 2
Noise‐to‐Signal (RMSD/σ) Ratios and Mean Differences in Air‐Sea Carbon
Flux Caused by Substituting the Respective Analysis Product Winds for
Those Measured by the Moored Buoys and Recalculating the Flux

Wind product CCMP v2 NCEP2 NCEP1

MAPCO2 Site Noise‐to‐signal ratio (mean difference)
Papa (145°W, 50°N) 0.16 (+5%) 0.79 (+42%) 0.37 (+5%)
KEO (145°E, 32°N) 0.24 (+6%) 0.66 (+20%) 0.47 (−13%)
WHOTS (158°W, 23°N) 0.10 (+4%) 0.34 (−22%) 0.38 (−28%)

TAO 165°E, 8°S 0.34 (+2%) 0.58 (+10%) 0.51 (−8%)

TAO 165°E, 0°N 0.25 (−7%) 1.1 (−27%) 1.3 (−35%)

TAO 170°W, 0°N 0.20 (−7%) 0.60 (−17%) 0.65 (−25%)

TAO 155°W, 0°N 0.36 (−5%) 0.80 (−19%) 0.92 (−31%)

TAO 140°W, 0°N 0.24 (−4%) 0.83 (−15%) 1.04 (−37%)

TAO 125°W, 0°N 0.45 (−5%) 0.81 (−4%) 0.98 (−37%)

TAO 110°W, 0°N 0.27 (−5%) 0.94 (+11%) 0.98 (−25%)

Stratus (85°W, 20°S) 0.09 (−4%) 0.31 (+10%) 0.28 (+11%)

Note. The RMSD and time series standard deviation (σ) are based on daily
averages. RMSD/σ values >0.5 are highlighted in bold type. Mean differ-
ences are listed as percentage change relative to the mean mooring‐based
carbon flux. Negative changes (lower flux amplitudes) are listed in red
type.
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We also calculated the mean flux offsets produced by substituting the ana-
lyzed wind products for themooring winds and found a similar qualitative
difference between the CCMP2 and reanalysis winds. Whereas the
CCMP2 mean offsets over the equatorial Pacific ranged from being 4%
to 7% different from the mooring wind results, the reanalysis products
are characterized by larger equatorial region offsets, near 20% in the
NCEP2 and 35% in the NCEP1 case. Interestingly, the three products all
tended to exhibit negative offsets (U2 less than observed) over the equator-
ial region, even though different biases were seen outside of this region.
Evidently, for analyzed wind products like these, the bias characteristics
revealed by direct observation in one region cannot be assumed to
hold elsewhere.

In sections 4 and 5, we make use of the rest of the tropical Pacific moored
buoy array (including the majority of moored buoys that are not MAPCO2
equipped) along with the ΔpCO2 fields provided by ESM 2G, to offer an
expanded analysis of the effects that biases in the analyzed wind products
have on our ability to estimate and monitor the magnitude, interannual
variability, and trend in equatorial Pacific CO2 flux.

4. Wind Analysis Uncertainty Assessed With the Full
Tropical Pacific Moored Buoy Array

In this section we use the high‐frequency wind observations from the full
tropical Pacific moored buoy array (~70 buoys spanning the width of the basin) to quantify the basin‐wide
biases inU2 contained in the analysis wind products over the period 1992–2016. The buoy array first reached
>60% complete data return over the core Pacific waveguide in 1992, with respect to the full deployment con-
figuration shown in Figure 3. Biases between the mooring winds and analyzed product winds are calculated
in this section based on site sampling the analysis winds when and where the high‐frequency buoy winds are
available over this period.

To highlight the differences between the buoy observations and analysis winds that are evident across the
region on interannual and longer time scales, we have averaged the analyzed product biases in space (across
all buoys) and then applied a 365‐day running mean filter to this region‐averaged time series. The resulting
annually averaged U2 time series are shown in Figure 3 as absolute values and in Figure 4 with their time
means removed. The absolute value case reveals that there are substantial regional differences in wind speed
squared between the mooring winds and the analyzed products, with the moorings recording the highest
values of the four data sets. The spatial distribution of the time‐mean offset is explored below.

Discrepancies between the variability of equatorial Pacific U2 observed by the buoys and contained in the
NCEP2 and NCEP1 reanalyses are large enough to obscure the behavior of the actual system on interannual
and longer time scales: The RMSE between the mooring and NCEP2 U2 annual‐and‐regionally averaged
time series (red and black lines in Figure 4) is 70% as large as the standard deviation of the observed varia-
bility (black line); that is, the noise is large enough to substantially obscure the actual variability of the
system. This ratio is comparably large (58%) in the NCEP1 case. Differences in the character of the
buoy‐observed and analyzed‐product wind variability are evident throughout the study period but are
especially large in the several years bracketing the turn of the century.

There is also a large discrepancy in the trend of U2 measured by the buoys and contained in the
reanalyses. Gauged by the slope of the best fit line, the mooring winds exhibit a small 25‐year trend in U2

(0.029 m2 · s−2 yr−1), whereas the trends based on NCEP2 and NCEP1 are 4 to 5 times larger than this
(0.11 and 0.15 m2 · s−2 yr−1, respectively). Using Student's tmetric for trend statistical significance, the trend
bias in the NCEP1 case is large enough that a statistically significant trend would be misleadingly identified
at the 90% confidence interval (effective time between independent samples estimated as 900 days based on
Leith's, 1973 method; see Harrison & Chiodi, 2015 for trend statistical significance discussion) although the
trend based on the mooring winds is much smaller and not statistically different from zero.

Figure 3. Ten‐meter wind speed squared averaged spatially over all avail-
able equatorial Pacific moored buoy observations, and smoothed with a
365‐day running mean filter to highlight annual and longer timescale
variability (black line). Also shown are the corresponding buoy site‐sampled
results from four analyzed wind products: CCMP1 (pink line), CCMP2
(green line), NCEP2 (orange line), and NCEP1 (blue line).
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After accounting for their difference in means, the CCMP1 result (Figure 4, pink line) tracks the buoy result
much more closely than the reanalyses. Discrepancies, however, are still evident at subannual timescales
that lead to a less than ideal noise‐to‐signal ratio (RMSE/σobs = 0.39) in the CCMP1 case. The largest multi-
year offsets are evident in the 1997–2006 interval and have the same character as the NCEP2 offsets during
this time. One possible explanation for this is that the use of the NCEP2 winds as background information
for the CCMP1 satellite‐wind assimilation technique substantially influences the outcome during this inter-
val (cf. McGregor et al., 2017).

The CCMP2 anomalies (green line in Figure 4) track the mooring winds more closely than the other three
products considered and accordingly has the smallest interannual noise‐to‐signal ratio (RMSE/
σobs = 0.21) of the four wind analysis cases considered here. However, there is still a spurious trend compo-
nent in CCMP2 that causes its 25‐year trend (slope of best fit line = 0.061 m2 · s−2·year−1) to exceed the buoy
result by a factor of 2.

Figure 4. The same site‐sampled wind speed squared time series shown in Figure 3, except with their time means
removed. Straight lines show the respective least squares fits. The time series are plotted such that the x axis values
represent the center date of the corresponding 365‐day averaging period.
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The spatial distribution of time‐mean offsets betweenU2 calculated from the high‐frequency mooring winds
and analysis product winds is illustrated by buoy location in Figure 5 for the analysis products available over
the full study period (NCEP1, NCEP2, and CCMP2). The all‐buoy and all‐time averaged difference between
the buoy‐observed and analysis‐sampled U2 is negative (observed U2 higher than analysis result) in each
case, with the average analysis product U2 magnitude ranging from 5% (CCMP2) to 35% (NCEP1) less than
the mooring observed value. The NCEP2 result, at 12% less than observed, offers improvement over the
NCEP1 result in this case. The CCMP2 result (5% less) is even closer to the observed value, based on this
site‐sampled comparison approach.

Interestingly, the mean offsets between the buoy and analysis‐derived U2 time series are not uniform across
the basin but change character depending on location and chosen analysis product. For example, although
the equatorial basin‐wide mean bias is negative in each case, larger than observed U2 values are still evident
in some equatorial Pacific locations in the NCEP2 and, to a lesser extent, CCMP2 product.

5. Wind Analysis Uncertainty Impacts on Equatorial Pacific Air‐Sea CO2 Flux

In this section we estimate the impacts that the wind biases in mean, interannual variability, and trend dis-
cussed in section 4 have on our ability to know these aspects of air‐sea CO2 flux over the equatorial Pacific.
We estimate these impacts by combining the analysis wind product uncertainties revealed by the mooring
wind comparison described in the section 4 with the dynamically consistent set of ΔpCO2 and U2 fields pro-
vided by the ESM 2G coupled model.

The ESM 2G simulation exhibits both positive and negative 25‐year trends in U2 over recent and coming
decades depending on the choice of start and end year (not shown). Nevertheless, despite the simulated flip
flops inU2 25‐year trend behavior, the model produces a consistently negative 25‐year trend in the sea‐to‐air
(upward) transport of carbon across the equatorial Pacific Ocean surface over this time, caused by the

Figure 5. Mean offsets between the TAO/TRITON mooring‐observed wind speed squared values and the buoy‐sampled
analysis wind products that span the 1992–2016 study period.
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simulated CO2 partial pressure increasing faster in the atmosphere than in the near‐surface equatorial
Pacific Ocean. Buoy sampling the model simulation over 10 different 25‐year periods spaced 1 year apart
(we used 2006–2015 to mimic potential availability of MAPCO2 carbon records, which began around
2006) yields the mean value of this trend as −0.062 ± 0.01 Pg C yr−1 per decade, which serves as a useful
reference value for the wind analysis uncertainty impacts described below.

To quantify the wind analysis uncertainty impacts, we start by subsampling the ESM 2G wind and ΔpCO2

fields according to the availability of the high‐frequency mooring wind observations. For example, starting
in model year 2006, we sample the model according to the data return from the full tropical Pacific
moored buoy array in place in that year, and so forth. Because the vast majority of the actual buoys do
not have carbon measuring capability, this model subsampling is used to simulate the situation in which
each mooring was deployed with carbon‐measuring capability and provides our base‐case, buoy‐sampled
simulation of air‐sea carbon flux. To gauge the wind speed squared uncertainty effects on flux, we pro-
duce, for each analysis product considered, an alternative flux data set that is calculated using the same
model ΔpCO2 fields as in the base case but a U2 field that has been adjusted to include the biases con-
tained in each of the analyzed wind products as estimated based on actual mooring wind observation com-
parison. Taking the NCEP2 product as an example, the NCEP2‐adjusted wind speed squared data set
(U2

NCEP2*) is calculated based on the simulated wind speed squared time series (U2
model) and the observed

NCEP2 biases (εNCEP2)

U2
NCEP2* ¼ U2

model þ εNCEP2;

wherein εNCEP2 is the difference between the NCEP2 buoy‐sampled wind speed squared (U2
NCEP2) and the

mooring‐observed wind speed squared (U2
TAO) over the 1992–2016 period

εNCEP2 ¼ U2
NCEP2−U

2
TAO:

εNCEP2 is thus a function of mooring latitude, longitude, and time (period 1992–2016). We have repeated this
uncertainty‐propagation approach using also the NCEP1 and CCMP2 wind products. In each case we have
used 10 different model start years, from 2006 to 2015 (while εNCEP2 remains unchanged but matched to a
different model start year), to account for the effects of using different beginning and end dates in calculating
trends and the fact that interannual and shorter timescale variability in the simulation should not be
expected to be in sync with that observed. Based on these pairs (base‐case‐model and wind‐bias‐propagated)
of 25‐year simulated records, we calculated the mean flux difference (base‐case minus bias‐propagated) for
each TAO mooring site (Figure 6). We also examine the degree to which introduction of the analysis pro-
duct's wind speed squared biases obscures interannual variability and 25‐year trend in regional air‐sea
CO2 flux (Table 3).

The 25‐year mean difference in flux is rather stable across the 10 different start years (standard deviation
across the 10 different start year cases is less than 3% of the overall mean) and illustrated in Figure 6 using
2006 as the start year. The model‐simulated net flux, averaged over the shaded region associated with each
buoy in Figure 6 in this case, is +0.46 Pg C yr−1, which is consistent with the current observational esti-
mates (e.g., 0.4 Pg C yr−1 from Ishii et al. (2014); 0.5 Pg C yr−1 from Takahashi et al. (2009)) of equatorial
Pacific carbon flux. The biases associated with the NCEP1 reanalysis reduce this net flux estimate by 0.18
Pg C yr−1, which amounts to a reduction of about 40% from the unbiased case. By percentage, the NCEP1‐
associated flux reduction (−40%) is somewhat larger in magnitude than the observation‐revealed defi-
ciency in time‐mean NCEP1 U2 (−35%) that causes it. The difference (5%) in these basin‐wide statistics
is attributable to the nonlinear effects of spatial variability in the wind bias and ΔpCO2 fields (e.g., wind
bias effects are enhanced where ΔpCO2 magnitudes are largest). The NCEP2 and CCMP2 products are
associated with smaller U2 biases than NCEP1 and, correspondingly, produce smaller offsets in the net
air‐sea flux. The wind‐bias‐driven flux reductions in these cases amount to 15% (NCEP2) and 6%
(CCMP2) of the unbiased case and thus contribute a still substantial amount of uncertainty if accurate
understanding of the carbon system is the goal. The CCMP1 biases (computed from the available 20‐year
rather than 25‐year record; not shown for figure clarity) also produce a reduction in net flux (8%) that is
comparable to but slightly larger than the CCMP2 case.

10.1029/2018GB006047Global Biogeochemical Cycles

CHIODI ET AL. 13



We offer two complementary measures of the effects of wind analysis product uncertainty on our ability to
estimate the interannual variability of air‐sea flux over the equatorial Pacific. Each is based on the 365‐day‐
running and all‐buoy averaged difference between the unbiased and U2‐bias‐propagated estimates of flux
from the ESM 2G model. In one case we choose the RMSE between these two time series as the core com-
parison metric and in the other the standard deviation of the base‐case minus bias‐propagated difference
(σΔ). The salient difference being that the RMSE accounts for any longer‐term mean offset between the
two cases, whereas the standard deviation approach does not. If there is little long‐term offset, the two mea-
sures will be similar. If the two measures are different and the long‐term offset can somehow be known and
subtracted with accuracy, then σΔmay be the appropriate measure. Alternatively, if the offset is not stable in
time, then the RMSE is the more appropriate measure of uncertainty.

Figure 6. Impacts of the analysis product wind speed squared offsets shown in Figure 5 on 25‐year mean regional carbon
flux calculations.

Table 3
Estimated Effect of Analyzed‐Product Wind Biases on Mean, Interannual Variability, and 25‐year Trend in Air‐Sea CO₂ Flux Over the Equatorial Pacific

CCMP2 (1992–2016) CCMP1 (1992–2011) NCEP2 (1992–2016) NCEP1 (1992–2016)

σΔ(Pg C yr−1) 0.007 ± 0.001 0.012 ± 0.001 0.023 ± 0.001 0.031 ± 0.001
σΔ/σ 0.106 ± 0.06 0.20 ± 0.02 0.34 ± 0.03 0.47 ± 0.03
RMSE 0.03 ± 0.001 0.04 ± 0.001 0.07 ± 0.001 0.19 ± 0.004
RMSE/σ 0.44 ± 0.02 0.56 ± 0.05 1.1 ± 0.06 2.8 ± 0.14
Mean difference (%) −6.3 ± 0.1 −7.7 ± 0.01 −15.3 ± 0.3 −40.1 ± 0.2
Mean difference Pg C yr−1 −0.030 ± 0.001 −0.036 ± 0.001 −0.070 ± 0.001 −0.18 ± 0.005
Trend difference (%) 8 ± 0.4 14 ± 1 22 ± 1 52 ± 2
Spurious trend Pg C yr−1 per decade 0.0063 ± 0.0003 0.013 ± 0.001 0.016 ± 0.001 0.038 ± 0.002

Note. The ± values give standard deviations produced by using 10 different model‐sampling start years.
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The σΔ values range by a factor of 4 across the analyzed wind products considered (Table 3), with CCMP2
achieving the best (0.007 ± 0.001 Pg C yr−1) and NCEP1 the most deficient (0.031 ± 0.001 Pg C yr−1;
Table 3) result. Normalizing by the standard deviation of the simulated flux (σflux) the noise‐to‐signal ratios
in this case range from σΔ/σflux = 0.1 in the CCMP2 case to ~0.5 in the NCEP1 case, with the CCMP1 (0.2)
and NCEP2 (0.34) results falling between these extremes. In the best (CCMP2) case, the uncertainty intro-
duced is suggested to be small enough to permit the usefully accurate estimation of interannual timescale
flux variability. In the worst case, however, the uncertainty introduced is unacceptably high for most appli-
cations; taking the observations available from the 125°W, 0°N mooring (Figure 1), for example, accepting
this level of uncertainty would be roughly equivalent to desiring information about flux variability at this
location but having no knowledge about the variability of surface ocean pCO2.

Of course, the best case scenario exploits knowledge of the mean offset as is provided in this case by the
mooring winds. Should this buoy information become unavailable, for example, by sections of the array
dropping out from instrument failure (e.g., vandalism) and maintenance gaps, or being redeployed else-
where, then it is unclear where knowledge of the mean offsets would come from, especially given that there
are substantial changes in the decadal‐averaged offsets in U2 revealed by the buoy comparisons. For exam-
ple, the CCMP2 U2‐driven flux offset averaged over the 2000–2009 period (0.024 Pg C yr−1; see Figure 3),
which is when the QuikScat scatterometer was available, is smaller than the average over both the prior

Figure 7. Ten‐meter height wind speed squared, as in Figure 3, except with best fit linear trends and results from buoy box
averaging (darker hues) added to the original buoy site‐sampled results for comparison. Thin gray curves show themoored
buoy result.
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(0.038 Pg C yr−1) and post‐2009 periods (0.027 Pg C yr−1). Such variability
leaves open to question the degree to which future year offsets can be
approximated from previously observed behavior and suggests the
RMSE as an appropriate metric. The RMSE values rank similarly to the
σΔ values, but with a substantial increase, for example, reaching noise‐
to‐signal (RMSE/σ) ratios of 0.44 ± 0.02 in the CCMP2 and 1.1 ± 0.06 in
the NCEP2 case (Table 3), underscoring the importance that basin‐wide
monitoring of wind variability has on our ability to make accurate esti-
mates of the variability of air‐sea carbon flux.

In addition to the mean and interannual‐timescale offsets in U2 discussed
above, there are spurious 25‐year trend components contained in the ana-
lysis products considered here (20‐year in the CCMP1 case) that cause
spurious trends in the regional CO2 flux estimates calculated based on
them. The NCEP2 biases inU2, which have a positive spurious trend com-
ponent over the study period, cause the basin‐wide net flux estimate to
also have a positive (upward) spurious 25‐year trend component with a
magnitude of 0.016 Pg C yr−1 per decade based on the least squares‐linear
fit slope of the difference between the bias‐propagated and unbiased
(model simulated) regional flux. Over the model period considered,
ESM 2G simulates a negative trend in flux over the equatorial Pacific
basin (slope about −0.06 Pg C yr−1 per decade) that is caused by pCO2

increasing faster in the model atmospheric than surface equatorial Pacific Ocean. In this scenario, the intro-
duction of the NCEP2 biases flattens (reduces by 22%) some of the simulated negative trend. Each of the
other analyzed wind data sets considered here also has a positive spurious trend component in U2 over
the study period (Table 3). The magnitude of this effect, however, varies greatly depending choice of analysis
data set, with CCMP2 (in this site‐sampling case) introducing the smallest and NCEP1 the largest spurious
trend component in flux. The degree to which smaller spurious trend components are acceptable for useful
estimation of CO2 fluxes depends in part on the comparative rate at which the actual system is undergoing
change. That our estimation of the analysis product‐introduced spurious trend components in flux remains
relatively stable across the 10 different start years suggests that the corresponding absolute trend values (e.g.
+0.006 Pg C yr−1 per decade for site‐sampled CCMP2) provides a useful approximation of the spurious trend
that using each wind product will contribute, even in the case that other (e.g., observation‐based) sources of
ΔpCO2 information are used.

6. Comparison of Buoy Site‐Sampling and Buoy Box‐Averaging Results

This section compares results described above based on buoy site sampling the wind products with those
from the buoy box‐averaging method in which the wind product grid points within rectangular regions cen-
tered on the buoy site and spanning 10–15° longitude and 2–3° latitude are averaged. This technique is moti-
vated by results of Harrison and Luther (1990), which showed that central and western tropical Pacific
Island Wind were coherent over these length scales at energetic time scales >2 days. For NCEP1, there is
little appreciable difference between the 25‐year trends based on these two sampling methods (slopes of best
fit lines differ by <1%) and the character of interannual variability (c.f. Figure 7) remains similar by either
approach. The regional time mean wind speed squared calculated from NCEP1 also remains relatively
stable (<4% change between the site‐sampled and box‐averaged values of 28.5 and 27.6 m2/s2, respectively)
regardless of which sampling method is chosen.

NCEP2 differences between buoy site‐sampled and box‐averaged mean wind speed squared values are simi-
larly small (only 2% change between respective 39.0 and 38.2 m2/s values). There is, however, a somewhat
more noticeable effect on trend in the NCEP2 than NCEP1 case. Box sampling produces a 27% larger linear
trend than site sampling, in the NCEP2 case.

Sampling method has a much larger impact on trend in the CCMP2 case than for NCEP1 and NCEP2.
Whereas buoy site‐sampling CCMP2 produces a 25‐year trend that is relatively flat (0.061 m2 · s−1 yr−1),
buoy box averaging produces a linear trend with slope of 0.22 m2 · s−1 yr−1, which is ~300% larger than

Figure 8. Slope of the best fit linear trend calculated at each grid point in the
CCMP2 wind product, period 1992–2016. Tick marks along the abscissa
and ordinate are placed at nominal longitudes and latitudes of the TAO/
Triton moored buoy array.
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the CCMP2 site‐sampling case and ~700% larger than the trend calcu-
lated from the moored buoy winds (0.029 m2 · s−1 yr−1). Inspection of
the spatial distribution of the 1992–2016 period linear trend in
CCMP2 wind speed squared (Figure 8) reveals that CCMP2 exhibits
trend behavior very near the locations of the assimilated buoy
observations that is substantially different from the trends found in
grid boxes even just a few degrees away from the buoy sites.
Regionally averaged trend statistics from CCMP2 are not representa-
tive of the buoy‐observed behavior even though site‐sampling
CCMP2 misleadingly yields relatively good buoy versus product
correspondence statistics.

Propagating the box‐averaged CCMP2 wind speed squared biases
through the simulated flux calculation, we find that the spurious
component of regional flux in this case increases to ~0.03 Pg C yr−1,
which is close to five times larger than was found in the CCMP2
site‐sampled case (Table 4).

7. Summary and Conclusions

Seven moored buoys deployed now for over a decade with direct carbon measuring capability in the tropical
Pacific provide a unique opportunity to examine the variability of air‐sea carbon flux over this region. These
seven buoys are a subset of a much larger array that spans the equatorial Pacific with the minimal spacing
needed to provide usefully complete information about the basin‐wide variability of winds at timescales of a
couple of days and longer (Chiodi & Harrison, 2017a; Luther & Harrison, 1984). The successful deployment
of this array over the last 25 years means that regional wind variability from days to decades have now been
resolved by this backbone component of the tropical Pacific Ocean observing system. Local wind variability
down to hourly resolution is also resolved by the array based on the 10‐min wind direction and wind speed
averages recorded on the buoys.

Analysis of the flux records made available by the carbon‐equipped subset of equatorial Pacific moorings
reveals that wind variability provides the primary control on air‐sea carbon flux variability measured at
the six mooring sites located on the equator across the Pacific Ocean. At the 165°E, 8°S site, as well as three
of the four mooring sites located farther (~20° to 50° removed) from the equator, ΔpCO2 variability plays a
larger role than wind in controlling CO2 flux variability.

The sparseness of the available pCO2 measurements in time and space remains a key uncertainty in estimat-
ing the actual trend in pCO2 flux based on direct carbon observations. Winds from the full moored‐buoy
array, consisting of ~70 equatorial Pacific sites, however, offer a basis to estimate the effects that biases in
analyzed wind products will have on direct bulk calculations of CO2 flux.

Observations made by the full tropical Pacific moored buoy array over the 25 years from 1992 to 2016 reveal
an average 10‐m wind speed squared (U2) of 44.3 m2/s2, with interannual variability of 2.5 m2/s2 and very
little trend: The linear fit slope of ~0.3 m2/s2 per decade over the 1992–2016 period equates to a 25‐year
change that is less than one third of the observed interannual standard deviation.

Over the period for which the tropical Pacific mooring array has been mostly complete, each of the analyzed
wind products considered here contains a spurious positive 25‐year trend component. Positive spurious
trend components in wind speed mask the trend in flux caused by air pCO2 increasing faster than surface
ocean pCO2 over the equatorial Pacific. The magnitude of the spurious flux components for each analyzed
wind product depended, to varying degree, on the wind product sampling method used. We considered
two complementary techniques: one which mimicked the point, or site sampling offered by the buoys in
actuality, and another that also took into account the behavior of the analyzed wind products near (within
~1° latitude and 5–8° longitude), but not precisely at the mooring locations. Based on results from seminal
TAO/Triton design studies (e.g., Harrison & Luther, 1990) and confirmation after two decades of deploy-
ment that the array works as it was designed for providing adequate basin widemomentum flux information
(Chiodi & Harrison, 2017a), we typically expect results from these two sampling approaches to be

Table 4
Biases in the Equatorial Pacific Time‐Mean Air‐Sea Carbon Flux, As Well As 25‐
year Trend in Regional Air‐Sea Carbon Flux Caused by Introducing the Wind
Speed Squared Biases in NCEP1, NCEP2, and CCMP2 Into the ESM 2G
Flux Calculation

Buoy site
sampling

Buoy box
averaging

CCMP2 spurious trend
(Pg C yr−1 per decade)

0.0063 ± 0.0003 0.029 ± 0.001

NCEP2 spurious trend 0.016 ± 0.001 0.021 ± 0.001
NCEP1 spurious trend 0.038 ± 0.002 0.039 ± 0.002
CCMP2 mean difference
(Pg C yr−1)

−0.030 ± 0.001 −0.058 ± 0.002

NCEP2 mean difference −0.070 ± 0.001 −0.074 ± 0.002
NCEP1 mean difference −0.181 ± 0.005 −0.19 ± 0.006

Note. Two sets of results calculated alternatively based on buoy site sampling
and buoy box averaging the analysis wind data sets are offered for comparison.
Values to the right of the ± symbols indicate the standard deviation of results
associated with subsampling model‐simulated ΔpCO2 fields using 10 different
start years.
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qualitatively consistent with one another. The spurious 25‐year trend component in regional air‐sea carbon
flux associated with using NCEP1 for wind information is 0.038 Pg C yr−1 per decade based on the point sam-
pling and 0.039 Pg C yr−1 per decade based on averaging near the buoys. These values are within a few per-
cent of one another yet large enough to mask over 50% of the 25‐year trend in CO2 flux simulated by the
model (−0.062 ± 0.01 Pg C yr−1 per decade). The spurious trend in flux associated with using NCEP2 is
0.016 Pg C yr−1 per decade by point sampling and 0.021 Pg C yr−1 per decade by buoy averaging, enough
to mask 20%–25% of the projected flux trend. Whether point or near‐buoy averaging is used has a much lar-
ger effect on the CCMP results. By point sampling at the buoy sites, CCMP2 appears to offer improvement
relative to the NCEP reanalyses, incurring a spurious positive trend in flux of only 0.0063 Pg C yr−1 per dec-
ade, which equates to (masking) only one tenth of the simulated regional flux trend. If, however, the nearby
grid values are also considered, the spurious trend component associated with CCMP2 increases fivefold to
0.03 Pg C yr−1 per decade. Site sampling on its own does not offer a complete comparison with the available
mooring wind observations in the CCMP case.

Recently, Wanninkhof and Triñanes (2017) used the CCMP2 wind product applied to a fixed monthly pCO2

climatology to examine how wind speed trends in CCMP2 cause changes in the global uptake of CO2 by the
ocean.Wanninkhof and Triñanes (2017) found that CCMP2 wind speed trends over 1988–2014 were greatest
in the equatorial Pacific, reportedly driving a 0.03–0.04 Pg C yr−1 per decade increase in regional outgassing,
thereby offsetting uptake increases estimated at higher latitudes. The authors were aware of the uncertainty
associated with diagnosing decadal‐scale trend behavior using products like CCMP2 and reported that spot
checking CCMP2 by TAO/Triton produced similar trend statistics. Although our analysis approach cannot
be applied to that study's high‐latitude results due to lack of a high‐latitude mooring array, our analysis of
the TAO/Triton region clearly shows that the trends in wind speed in CCMP2 over the full equatorial
Pacific region are inconsistent with the available mooring wind observations. In fact, the biases in CCMP2
determined relative to the available mooring winds using the more regionally representative buoy box‐

averaging sampling strategy introduce a spurious trend component in air‐sea CO2 flux over the equatorial
Pacific that roughly equates to the one reported by Wanninkhof and Triñanes (2017). We suggest that the
interpretation of the regional trend in CCMP2 as being representative of the actual system deserves reconsi-

deration. The implication is that the actual equatorial Pacific trend in CO2 outgassing due to trends in wind

is considerably smaller than their 0.03–0.04 Pg C yr−1 per decade range previously reported.

There are also offsets in the mean between the mooring and analyzed wind products over the equatorial
Pacific: The CCMP2, NCEP2, and NCEP1 U2 values fall short of the observed value of 44.3 m2/s2 by 2.2,
5.2, and 15.7 m2/s2, respectively, based on buoy site sampling, and 4.8, 6.1, and 16.7 m2/s2 based on buoy
box averaging. These biases in U2 produce negative offsets in the regional mean air‐sea carbon flux of
6%–14%, 15%–18%, and 40%–43%, respectively.

For each wind product considered, we found that the biases in carbon flux caused by biases in the analyzed
winds were stable across the choice of different simulated 25‐year ΔpCO2 segments. This suggests that fluxes
estimated based on other sources of recent‐decade ΔpCO2 information may be usefully corrected for their
wind‐product‐introduced biases by adjusting the analyzed winds by the available mooring wind observations.

In the other oceanic regions that do not have a mooring array designed to measure the basin‐wide wind
variability field, it is difficult to reliably estimate the regional biases contained in the analyzed wind
products. In these cases, it is often assumed that the uncertainty associated with our knowledge of the actual
system is represented by the spread between different analyzed products. Results herein, based on the selec-
tion of four analyzed wind products usedmost commonly in recent large‐scale carbon flux studies, show that
this would be an inaccurate assumption to make over the equatorial Pacific.

Monitoring and understanding the extent to which the regional carbon flux is undergoing longer‐term
change is key to projecting future atmospheric and oceanic concentrations. These results highlight the
importance of accurate wind information in estimating the magnitude, trend, and year‐to‐year variability
of air‐sea carbon flux over the equatorial Pacific. Available wind products have significant shortcomings
for this purpose, as revealed by comparison with direct wind observations from moorings. Sustained direct
wind observations remain essential for accurate estimation of flux trends on interannual to
multidecadal timescales.
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Our finding that the observed equatorial Pacific wind speed squared behavior falls outside of the envelope of
the reanalysis wind products—even though the mooring winds are available for assimilation into these
products—provides a cautionary reminder that analysis products like these need to be evaluated against
high‐quality observations on relevant space and time scales to assess how well they represent the actual
system. Understanding the uncertainties associated with synthesizing full oceanic and atmospheric pCO2

fields based on the available observations is another important part understanding the uncertainty in our
ability to monitor basin scale air‐sea carbon flux. We leave complementary evaluation of observation‐based
pCO2 analysis products to future work.
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