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ABSTRACT

Accurate real-time knowledge of equatorial Pacific wind stress is critical for monitoring the state of the

tropical Pacific Ocean and understanding sea surface temperature anomaly (SSTA) development associated

with El Niño–Southern Oscillation (ENSO) events. The tropical Pacific moored-buoy array has been shown

to adequately provide this knowledge when operating as designed. Ocean model simulation of equatorial

Pacific SSTA by moored-buoy winds reveals that recent western Pacific buoy losses exceed the array’s

minimal redundancy. Additional wind measurements are needed to adequately simulate ENSO-related

SSTA development when large portions of the moored-buoy array have been lost or decommissioned.

Prospects for obtaining this supplemental wind information in real time are evaluated from simulations of

central equatorial Pacific SSTA development during 2017 and end-of-year Niño-3.4 conditions during the

previous 25 years. Results show that filling multiple-buoy-dropout gaps with winds from a pair of scatter-

ometers (2000–17) achieves simulation accuracy improving upon that available from the moored-buoy array

in the case in which large portions of the array are out. Forcing with the reanalysis-product winds most

commonly used in recent ENSO studies or the scatterometer measurements (without the buoy winds) de-

grades simulation accuracy. The utility of having accurate basinwide wind stress information is demonstrated

in an examination of the role that easterly weather-scale wind events played in driving the unexpected de-

velopment of LaNiña in 2017 and by showing that wintertimeNiño-3.4 conditions can be statistically forecast,
with skill comparable to state-of-the-art coupled models, on the basis of accurate knowledge of equatorial

Pacific wind variability over spring or summer.

1. Introduction

Equatorial Pacific zonal wind stress variability is a

dominant driver of the equatorial Pacific sea surface

temperature anomaly (SSTA) development associated

with El Niño–Southern Oscillation (ENSO) events. In

both their warm-SSTA (El Niño) and cool-SSTA (La

Niña) extremes, ENSO events can significantly influence

seasonal weather conditions in affected regions around

Earth. The strongest and most consistent ENSO

associations with extratropical seasonal weather anoma-

lies generally occur in boreal winter (Trenberth et al. 1998;

Wolter et al. 1999; Sarachik and Cane 2010; Chiodi and

Harrison 2013, 2015b). The prevalence of one ENSO ex-

tremeover the other during amultiyear span (e.g., LaNiña
becoming more frequent than El Niño) has been found to

be a precursor of multiyear drought in affected extra-

tropical regions (Schubert et al. 2004; Seager et al. 2005;

Herweijer et al. 2006). Accurate real-time knowledge of

equatorial Pacific wind variability is critical for monitoring

the coupled-anomaly state of the tropical Pacific. It also

provides the basis for initialization and verification of

coupled ocean–atmosphere forecast models.

Wind observations from the tropical Pacific moored-

buoy array [also known as TAO/Triangle Trans-Ocean

Buoy Network (TRITON)] provide high-quality real-

time wind observations from ;70 mooring sites that

span the equatorial basin from 88S to 88 or 98N and from

1378E to 958W (McPhaden et al. 1998). The interbuoy

spacing of TAO/TRITON was designed to resolve the
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meridional and zonal coherence length scales of equa-

torial Pacific wind variability on time scales greater than

2 days, as they were determined based on tropical Pacific

island wind records by Harrison and Luther (1990).

TAO/TRITON has recently been confirmed to work

as designed to provide basinwide wind observations for

forcing ocean model simulations of observed central

equatorial Pacific SSTA development and thereby pro-

viding a basis for understanding that development. In

fact, the simulations of Niño-3.4 SSTA development

forced by the moored-buoy winds on their own have

been found to be substantially more accurate than those

driven by the reanalysis wind stress products used most

commonly in recent ENSO studies over the first 20 years

of the array (1992–2011; Chiodi and Harrison 2017a).

The usefulness of the array is conditional, however, on

there being few gaps caused by nonfunctioning buoys

(Chiodi and Harrison 2017b). The aforementioned co-

herence length-based array design suggests that the gap

caused by a nonfunctioning buoy surrounded by oper-

ational ones can be filled with reasonable confidence

based on the adjacent mooring wind observations. But

when adjacent buoys are also out, wind information is

lost from the array.

Currently, only 2 of the traditional 12 TRITON buoys

(sites along 1378, 1478, and 1568E) are reporting wind

observations. This creates large gaps in buoy coverage

over the far western tropical Pacific, which is a locus of

westerly wind events known to play a key role in the

onset and development of El Niño events (Vecchi and

Harrison 2000; Lengaigne et al. 2004; Lopez and

Kirtman 2014). Failure to find other means by which

wind and wind stress variability can be accurately esti-

mated over this region would result in a substantial

decrease in our ability to monitor ENSO state and un-

derstand the reasons for observed ENSO-related SSTA

developments.

Here we examine the prospects for filling the wind

knowledge gaps caused by buoy dropouts with other

sources of wind information that are available in real or

near–real time. Sources of wind information considered

herein include the direct observations provided by the

Tropical Pacific moorings (with and without lost-buoy

gap filling by cross-buoy interpolation), measurements

from a pair of satellite-based scatterometers; namely,

QuikSCAT from 2000 to 2009 andASCAT-A from 2009

to 2017 (expansions of many of the acronyms used in this

paper can be found at https://PubsAcronymList), and a

popular numerical weather model run in data assimila-

tion mode: the NCEP–NCAR reanalysis (NCEP-1;

Kalnay et al. 1996). NCEP-1 is chosen in this case be-

cause it is distinct among other popular reanalysis wind

products for offering real-time availability.

We evaluate different waveguide-wide wind stress

compilations by their respective ability to force an ocean

general circulation model to accurately simulate observed

Niño-3.4 behavior. Accuracy is evaluated based on the

root-mean-square error (RMSE) between observed end-

of-year Niño-3.4 conditions and those simulated in a series

of yearlong model runs. Annual simulations date back to

1992 for wind stress fields that do not include satellite in-

formation, and 2000 that do.

The simulation experiments performed for this exam-

ination are configured using the popular Geophysical

Fluid Dynamics Laboratory (GFDL) Modular Ocean

Model (specifically, MOM4p1; Griffies et al. 2003) and

are free forced, as in Chiodi and Harrison (2017a,b),

meaning that no form of model nudging toward observed

ocean temperature is applied. If the applied wind stress is

inaccurate, the ocean model is deficient, or something

other than wind stress is responsible for the observed

SSTA development, the model simulation will be in-

accurate. If accurate SSTA development is simulated in

this model configuration, this is an indication that wind

forcing provided a dominant control on the observed

SSTA development and that our observing system pro-

vided usefully accurate knowledge of that wind forcing.

After evaluating each wind stress compilation’s ability

to force accurate SSTA simulations in the ocean model,

the utility of the top-performing wind stress field is ex-

plored in two contexts. One is a case study of the role of

subseasonal wind events in driving the 2017 La Niña.
The other is as a statistical predictor of wintertimeNiño-
3.4 conditions (the dynamical ocean model is not in-

corporated in the statistical forecasting context).

The ENSO development trajectory observed in 2017

exhibited some weak El Niño–like characteristics in

summer (moderately warm central equatorial Pacific

SSTAs) but then surprised forecasters by reaching La

Niña SSTA status by the end of the year. Understanding

the reasons for this unexpected midyear reversal in de-

velopment is an important first step toward improving

upon our ability to predict event developments like this

one. The best-performing wind stress compilation is able

to simulate the observed midyear reversal in develop-

ment with timing and amplitude like that observed,

achieving a signal-to-noise ratio of ;3 based on the

RMSE of the simulated monthly 2017 Niño-3.4 values

and the standard deviation of the observed 2017 Niño-
3.4 trajectory. Based on this wind stress compilation, the

distribution of subseasonal wind events in 2017 is iden-

tified using the detection algorithm of Chiodi and

Harrison (2015a). Subsequent model experiments are

performed to examine the role that the observed wind

event distribution played in the mid-2017 reversal in

ENSO SSTA development.
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Skill in predicting Niño-3.4 SSTA conditions at leads

of a few months to seasons has been (Kumar et al. 2007;

Xue et al. 2013) and remains (Barnston et al. 2019) a

much-scrutinized benchmark for our ability to forecast

ENSO. The basis for predicting boreal wintertime Niño-
3.4 anomaly from accurate knowledge of equatorial Pa-

cific wind variability is revisited herein using a statistical

forecasting approach based on the best-performing wind

stress field over the period for which winds from both the

moored-buoy array and scatterometers are available

(2000–17). In this case, equatorial Pacific wind stress is

arithmetically integrated over different (boreal) spring,

summer and fall periods and then used as a predictor for

the subsequent wintertime Niño-3.4 SSTA anomaly. The

retrospective forecast skill of the wind stress–integral ap-

proach is compared with that offered by the NCEP Cli-

mate Forecast System, version 2 (CFSv2; Saha et al. 2010).

The presentation of results herein is organized as

follows. The methods used to construct equatorial Pa-

cific waveguide-wide wind stress fields based onmooring

and scatterometer winds are described in section 2.

Oceanmodelingmethods are also described in section 2.

Model simulations of the 2017 Niño-3.4 development

trajectory forced by the different candidate wind stress

datasets are examined in section 3. The role of easterly

wind surges (EWS) in driving the observed Niño-3.4
development in 2017 is further examined in section 4.

End-of-year Niño-3.4 simulation accuracy over the pe-

riod 1992–2017 is examined in section 5. The prospects

for statistically predicting boreal wintertime Niño-3.4
conditions based on wind stress integrals over the pre-

ceding seasons are examined in section 6. Discussion

and conclusions are offered in section 7.

2. Data and methods

Near-surface wind data were acquired from TAO/

TRITON (TAO/TRITON 2000), which provides direct

daily-averaged wind observations, in real time, from

;70 sites spanning the equatorial Pacific Ocean wave-

guide along the longitudes of 1378E, 1478E, 1568E,
1658E, 1808, 1708W, 1558W, 1408W, 1258W, 1108, and
958W, and latitudes of 88S, 58S, 28S, 08, 28N, 58N, and 88N
(or 98N at 1408W). Daily-averaged moored-buoy winds,

themselves calculated from the 10-min averages col-

lected and stored on the buoys, were obtained from the

NOAAPacificMarine Environmental Laboratory TAO

project office. Data from individual equatorial sites date

back to the early 1980s, but the study period herein starts

in 1992, when annually-averaged data return over the

core ocean waveguide (28S–28N) first reached 60% rel-

ative to perfect return from the array as it was designed.

Chiodi andHarrison (2017a) found the 60% return level

to be the minimum necessary for adequate ocean-model

simulation of observed Niño-3.4 SSTA development.

Wind data are converted to zonal pseudostress tx us-

ing the following formula:

tx 5 r
a
C

d
jUju ,

with air density ra assigned the value of 1.25kgm23,

Cd 5 1.33 1023,U being the 10-m wind vector, and u its

zonal component. Buoy winds observed at 4m above sea

level were adjusted to 10-m height using a logarithmic

height adjustment and assuming neutral atmospheric sta-

bility (also done in Mears et al. 2001) with 1.52 3 1024m

as the oceanic surface roughness length (Peixoto andOort

1992). In the case of 4-mmooringwindmeasurements, this

equates to multiplying themooring wind speeds by 1.09 to

adjust them to the nominal height (10m) of the satellite-

and reanalysis-based wind data described below.

Wind stress anomalies are calculated by subtracting the

monthly-mean seasonal cycle (also known as climatol-

ogy) for the 1992–2017 period, with daily climatological

values determined based on linear interpolation of the

monthly climatological means. This anomaly definition is

used for all variables considered herein, including SST,

with the limitation in the scatterometer wind case that the

record begins in late 1999 (discussed below).

For subseasonal near-surface equatorial Pacific wind

event identification, we use the detection algorithm of

Chiodi and Harrison (2015a). By this method, wind

events are identified when daily- and waveguide-

averaged (58S–58N) zonal wind stress anomalies ex-

ceed 0.045 Pa in magnitude (easterly or westerly) over

at least 258 of longitude and three, or more, consecutive

days. The region over which the anomaly exceeds the

thresholdmay differ by day butmust overlap the previous

such region. This feature of the detection algorithm al-

lows events to grow in zonal length or propagate east-

ward/westward.

By design, TAO/TRITON moorings are spaced to

match the coherence length scales of the wind variability

on time scales greater than a few days (Harrison and

Luther 1990). To synthesize a waveguide-wide wind stress

field based on the TAO/TRITON wind observations, we

take advantage of this design feature and subdivide the

equatorial Pacific into rectangular grid boxes surrounding

each mooring site with east–west boundaries equidis-

tant from the mooring-line longitudes and north–south

boundaries equidistant from the mooring latitudes. These

buoy boxes are filled with the wind stress anomalies esti-

mated from the mooring wind observations when the

mooring winds are available. Zero anomaly (i.e., clima-

tological wind stress) is applied in this case when the

moored-buoywind observations are unavailable.We refer
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to this wind stress field as TAObox hereinafter. We also

use a second TAO-based approach in which the gaps

caused by buoy dropouts are filled using linear in-

terpolation when observations from adjacent buoys are

available. We refer to this x- and y-direction-interpolated

case as TAOxyf.

Wind speed and direction information over the equa-

torial Pacific was also acquired on the basis of a pair of

satellite-based scatterometers (QuikSCATandASCAT-A),

which offer surface-roughness (backscatter)-based

wind estimates. Together, QuikSCAT andASCAT-A

span the calendar years from 2000 to the present

(QuikSCATended in 2009;ASCAT-A started in 2007 and

remains operational as of the preparation of this paper).

The scatterometer data used here are produced by the

Remote Sensing Systems Co., sponsored by the NASA

Ocean Vector Winds Science Team, and processed using

the C-2015 model function (Ricciardulli and Wentz 2016)

for ASCAT and the Ku-2011model function (Ricciardulli

and Wentz 2015) for QuikSCAT. These scatterometer

wind model functions were designed to yield wind speed

and direction information at 10-m height that are consis-

tent across the two different instruments and on a 0.258
grid. Both scatterometers measure winds along the equa-

torial Pacific in a series of daily ascending (traversing

the surface in a nearly south-to-north path) and descend-

ing (north to south) satellite passes, approximately six

of which occur per day over the equatorial Pacific. The

;1600-km-wide QuikSCAT swaths typically combine to

provide at least one measurement per day in the 0.258 grid
boxes spanning the equatorial Pacific, except when rain is

present. The scatterometer winds are converted to wind

stress using the equation above. Each day’s ascending and

descending passes are averaged in the case that overlap

occurs. The ASCAT-A data are treated similarly to the

QuikSCAT data herein. The ASCAT-A antennae geom-

etry, however, is different from QuikSCAT’s to the effect

that each ASCAT-A pass provides two ;500-km-wide

swaths of measurements separated by a 360-km gap in the

east–west direction. Daily ASCAT-A coverage along the

equatorial Pacific is less than QuikSCAT’s, typically only

around 60%–65%. Application of 3-day averaging, ap-

plied here using a 1–2–1-day triangle filter, fills most of

these gaps, leaving the 3-day averaged ASCAT-A record

;90% complete along the Pacific Ocean waveguide. This

3-day averaging is also applied to the QuikSCAT record.

QuikSCAT data were used in their entirety over the pe-

riod for which they were available, and ASCAT-A data

were used thereafter.At the time of paper preparation, the

delay for ASCAT-A data is ;2 weeks. Ways to decrease

this delay are under investigation (L. Ricciardulli 2018,

personal communication). We refer to the QuikSCAT 1
ASCAT-A wind stress field as ‘‘SCAT.’’

We construct and examine a third wind stress anomaly

dataset in which the TAObox observations are used when

and where they are available, and the buoy-dropout gaps

are filled with the SCATwind stress field.We refer to this

case as TAOSCAT.

We also use surface wind stress estimates from the

NCEP–NCAR Reanalysis-1 (NCEP1 1996) described by

Kalnay et al. (1996).NCEP-1 is a numericalweathermodel

run in data assimilation mode. NCEP-1 assimilates the

TAO/TRITON observations and is provided at 2.58 and
6-hourly resolution. NCEP-1 wind stress analyses are typi-

cally available with only 1 or 2 days lag. Time–longitude

58S–58N averaged wind stress estimates during 2017 from

NCEP-1, ASCAT-A, TAOSCAT, TAOxyf, and TAObox are

provided in Fig. S1 of the online supplementary material.

The ocean general circulation model used here is based

on NOAA GFDL’s MOM, version 4.1 (MOM4; Griffies

et al. 2003). It is employed with 27 vertical levels con-

sisting of a uniform 10m grid in the upper 100m, upper

grid point at 5m, and gradually decreasing vertical reso-

lution below 100m. The horizontal grid is uniform be-

tween 108N and 108S, with 0.338 resolution in latitude and

1.08 resolution in longitude. Poleward of 108 the meridi-

onal resolution increases nonuniformly to 508N and to

258S. The model is spun up over 30 years by applying the

climatological wind stress developed from the COADS

marine dataset and Large and Pond (1981) stability de-

pendent drag coefficient by Harrison (1989) and surface

heat flux parameterization ofHarrison et al. (2009), which

utilizes the shortwave parameterization in terms of model

SST of Harrison (1991) and sets longwave flux to

55Wm22. Run in this climatological mode, this model

rather accurately reproduces the main features of the

observed climatological upper ocean currents and ther-

mal structure, including the zonal gradient in equatorial

SST. Climatological-mode simulations from this model

were used by Harrison et al. (2009) to examine the role

that the different components of surface forcing, including

zonal andmeridional stress, play in driving these observed

features of the upper PacificOcean’smean seasonal cycle.

In the experiment mode, the longwave and shortwave

fluxes are specified as in the spinup, but latent and sensible

heat fluxes are determined differently, based on the applied

wind speed calculated from the applied wind stress, and a

constant sea surface to 2-mair temperature differenceof 18C
and constant near-surface relative humidity of 0.8. These

constants are broadly representative of the average condi-

tions over tropical oceans and were also used by Philander

and Siegel (1985). A salient feature of this parameterization

is that the model is not constrained by observed air tem-

perature, observed near-surface humidity or surface tem-

perature in experiment mode, and is thus free to simulate

inaccurate SSTAs if forced with inaccurate wind stress.
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SSTAs are simulated here as the difference between a

control run, forced with the climatological wind stress

used in the spinup and an experiment run that is the same

as the control except that zonal wind stress anomaly from

oneof the candidate datasets (TAObox, TAOxyf, TAOSCAT,

SCAT, NCEP-1) is added to the climatological zonal

stress. The experiment runs begin from climatological

ocean initial conditions (hence, zero initial ocean anom-

aly) on 1 January of the given year. The experiment runs

are forced for 1 year. So, in order to compare observed

and simulated end-of-year Niño-3.4 conditions over the

1992–2017 period, a series of 26 yearlong integrations was

performed for each wind stress dataset.

The effects of using slightly differentmodel experiment

start dates (e.g., 1, 3, 6, or 9 January) was tested and found

to cause only very small changes in the simulated Niño-
3.4 SSTA trajectories [e.g., monthly Niño-3.4 root-mean-

square differences (RMSDs) of only;0.018C in the 2017

simulations discussed in the first figure below]. Thus, only

runs starting from 1 January are discussed herein.

NOAA OISST (Reynolds et al. 2002) is used for veri-

fication of the forced-ocean model simulations. Pre-

liminary examination (not shown) revealed that OISST

Niño-3.4 trajectorywas closest to that measured by TAO/

TRITON near-surface ocean temperatures (5-m depth)

among NOAA ERSST (v5) and Hadley Centre SST

(HadISST). The agreement between TAO/TRITON

SSTs, averaged over the Niño-3.4 region, and Niño-3.4
based on OISST is close enough that the TAO/TRITON

result can be substituted for OISST in the 2017 simula-

tions discussed below, and the results remain quantita-

tively (RMSD , 0.028C) and qualitatively similar.

Arithmetic integrals of zonal wind stress anomaly cal-

culated on a year-by-year basis over the seasons typically

associated with ENSO onset and development (e.g., from

spring through fall of ENSO year 0) are also used to

statistically forecast Niño-3.4 conditions at the end of the

(same) calendar year in section 6. The effects of using

different start dates (arithmetic integration time scales)

and end dates (forecast leads) are explored. To do this,

the wind stress integrals were calculated using end dates

stepped one month apart. The longest lead forecast

considered has 30 April as end date. The shortest lead

forecast would be issuable on the last day of November.

These end dates were paired with the different possible

first of the month start dates that provide at least two full

months of integration time, beginning with 1 March.

Thus, with 30 April as the end date there is only one in-

tegration period considered (1 March–30 April). With

31 May as the end date there are two integration periods

considered (1 March–31 May, 1 April–31 May), in the

30 June end date case there are three integration periods

(1 March–30 June, 1 April–30 June, 1 May–30 June), and

so forth. Comparison of results that are based on the same

end date but different start dates allows for the effects of

the integration time span to be examined at a given

forecast lead. The earliest start date evaluated herein is

1 March because preliminary examination showed that

using start dates prior to 1 March only resulted in deg-

radation of forecast skill. Closer inspection of pre-March

winds (not shown) revealed that the anomalies found at

the beginning of years categorizable as year 11 of some

of the larger ENSO events in record (e.g., 2016 of the

2015/16 El Niño) often exhibited anomaly conditions

more closely associated with the (previous) ENSO event

peak than subsequent ENSO development. This at least

partly explains why tabulating pre-March winds was

found to be unhelpful in this context.

The core spatial wind stressmeasure used for integration

here is the zonal stress anomaly calculated usingTAOSCAT

and averaged between 58S and 58N, and 1308E and 1208W.

1308E is thewestern edge of ourmodel domain, and 1208W
the eastern edge of theNiño-3.4 averaging region. It is over
this fetch that equatorial Pacific zonal momentum stress

most efficiently drives SSTA change over the eastern

central equatorial Pacific (including the Niño-3.4 region)

by exciting eastward propagating equatorially trapped

oceanic baroclinic Kelvin waves.

To assess forecast skill in this case, wind stress in-

tegrals over preceding seasons are used to statistically

predict target December–February (DJF) Niño-3.4
values based on linear regression and leave-one-out

cross validation. In the cross-validation step, the linear

regression coefficients by which a given year’s wind in-

tegral (predictor) is converted to DJF Niño-3.4 (pre-

diction) were calculated using information from all years

in the 2000–17 period except for the year in question.

Cross-validation methods such as this are used to avoid

specifying the answer to retrospective forecast methods

and thereby overestimating forecast skill.

3. Simulating 2017 Niño-3.4 development

Monthly averaged Niño-3.4 SSTA exhibited near-

neutral conditions through most of the first 3 months

of 2017 (January through March averaged Niño-
3.4 5 20.058C). Springtime warming drove the June

2017 Niño-3.4 average to the 10.58C level, which cor-

responds approximately to 10.5 standard deviations

(s5 0.948C based on monthly averaged Niño-3.4 values
from 1992 to 2017). This early 2017 warming tendency

changed sign abruptly in July, however, and Niño-3.4
cooled to 20.2s by August and ended the year with a

December average of 20.9s (Fig. 1, black curves in

each panel). Despite having warmer than average

midyear central Pacific SSTA conditions, 2017 reached
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‘‘La Niña’’ status around the end of the calendar year

based on the commonly used SSTA-based definitions

(e.g., NOAA’s Climate Prediction Center has tradition-

ally defined La Niña as an interval in which 3-month-

averagedNiño-3.4,20.58C for five consecutivemonths).

The 2017 October–December (OND)-averaged Niño-3.4
valuewas20.75s basedonNOAAOISST (2002;Reynolds

et al. 2002) and the 1992–2017 base period.

The 2017 Niño-3.4 trajectory simulated by forcing our

ocean model with NCEP-1 zonal stress anomaly is not

very accurate (Fig. 1, left panel). NCEP-1 wind stress

drives cooling, rather than the observed warming

through April and substantially weaker-than-observed

cooling over the latter half of the year. The NCEP-1-

forced December-averaged Niño-3.4 value is 0.68C
warmer than observed. The RMSE of the NCEP-1

simulation, calculated based on the simulated and ob-

served trajectories of monthly averaged Niño-3.4 dur-

ing 2017 is 0.408C, nearly equal to the observed

2017 monthly averaged Niño-3.4 standard deviation of

0.458C (s17). The signal-to-noise ratio of the NCEP-1

simulation (s17/RMSE) is thus ;1.

Forcing the model with the TAObox zonal stress field

offers a substantially more accurate simulation than pro-

duced by forcing with NCEP-1. The TAObox simulation is

28%more accurate than theNCEP-1 result based on their

respective RMSEs of 0.298 and 0.408C. The TAObox

simulation is still less than satisfying, however. For ex-

ample, TAObox simulated Niño-3.4 warms insufficiently

during the first half of the year and cools insufficiently

through the second half, ending the year with a simulated

December-average Niño-3.4 value that is 0.48C warmer

than observed (Fig. 1, panel second from left).

TheASCAT-A simulation (Fig. 1, center panel) has an

RMSE of 0.248C and thereby achieves a signal-to-noise

ratio of ;2. The ASCAT-A simulation, however, still

ends the year with its December-averaged Niño-3.4 value
approximately 0.48C warmer than observed.

Inspection of the daily averaged mooring and scatter-

ometer wind stresses from mid-February reveals that a

westerly wind event with duration (;1 week), amplitude

(.0.045Pa), and zonal length scale (;2000km) broadly

consistent with the westerly event composite average

(e.g., Vecchi and Harrison 2000) occurred in a hole in the

mooring array caused by the loss of most of the buoys in

the far western equatorial Pacific (Fig. 2, upper two

panels). An interestingly comparable situation occurred

in September 2017, when an EWS occurred with its

equatorial peak in zonal stress anomaly located in a hole

caused by the loss of some central equatorial Pacific buoys

(Fig. 2, lower two panels). These types of occurrences

(wind events in buoy-dropout gaps) largely explain the

differences between the 2017 TAObox simulation, which

failed to warm as much as observed following the missed

westerly and cool as much as observed following the

missed easterlywind event, and theTAOxyf andTAOSCAT

results, which tracked the observed SSTA development

better than TAObox.

The TAOxyf run (Fig. 1, second panel from right)

produces anRMSE of 0.238C and further improves upon

FIG. 1. Monthly-averaged Niño-3.4 SSTA in 2017 as based on the NOAAOISST observational

compilation (black curves) and ocean model simulations forced by applying zonal wind stress

anomalies from different datasets (colors as listed).
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the ASCAT-A result by ending the year with December-

averaged Niño-3.4 much closer to the observed value

(within 0.28C of observations). Forcing the model with

the TAOSCAT field (Fig. 1, right panel) produces a sim-

ulation that achieves RMSE of 0.168C. This represents a
factor 2 improvement in RMSE over the NCEP-1 result.

The signal-to-noise ratio (s17/RMSE) of the TAOSCAT

simulation is ;3.

If the period over which the RMSE is calculated is

changed from starting in January to starting in July, so that

the period overwhich themodel first develops SSTA (e.g.,

the first few months of 2017) and the effects of (the array

missing the) early year western Pacific westerly wind

event activity areminimized, then the signal-to-noise ratio

of TAOxyf (3.25) improves to the level of TAOSCAT (also

3.25 over July–December). The signal-to-noise ratio of

the other runs remain relatively unchanged in this case

(e.g., NCEP-1 signal to noise over July–December is;1).

This supports the conclusion that the moored-buoy array

works well when operating as designed and satellite winds

aremainly useful in this context when large portions of the

moored-buoy array are unavailable.

In summary, on the basis of 2017Niño-3.4 simulations,

comparison of the TAOSCAT and TAOxyf results high-

lighted the need to patch the gap in the moored-buoy

array caused by the TRITON part of the array (12 sites

along 1378E, 1478 and 1568E) being reduced to two

moored buoys. Even so, TAOxyf performed about aswell

FIG. 2. Daily averaged snapshots of wind stress information available on 12 Feb and 10 Sep 2017

from the tropical Pacificmoored-buoy array and the satellite-basedASCAT-A scatterometer. The

wind events depicted last longer than a day; snapshots are offered here to illustrate data return

from these two platforms (satellite and moored-buoy array).
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as TAOSCAT. Both TAOSCAT and TAOxyf simulations

end the year with accurate Niño-3.4 conditions. NCEP-1

produced a substantially higher level of error than the

other four wind stress fields considered.

4. The role of easterly wind surges in driving the
2017 La Niña

Successful simulation of the observed 2017 Niño-3.4
development trajectory provides grounds for under-

standing that development based on characteristics of

the applied wind stress variability. Closer examination

of the 2017 TAOSCAT field reveals that the equatorial

easterly wind stress anomalies responsible for the de-

velopment of La Niña–type SSTAs during late boreal

summer and fall are concentrated in synoptic-scale

easterly wind events: Application of the wind event

detection algorithm described by Chiodi and Harrison

(2015a) identifies a series of five EWSs during the sec-

ond half of 2017, beginning with an event centered near

1708W in July, followed by a pair of EWSs centered

around 1658E in September and subsequent central-

basin events in October and November (Fig. 3, left

panel). No large westerly wind events were observed

during this period.

To examine the effects of this wind event distribution

on model SSTA development, the post-June 2017

TAOSCAT zonal stress anomaly field was reconstructed

by applying five averaged-size (Chiodi and Harrison

2015a) EWS wind stress anomaly composites at the lo-

cations and times of the observed surges. Experiment

reveals that forcing the model with TAOSCAT stress

through June 2017 and then the five EWSs from July

through December 2017 drives Niño-3.4 development

that closely tracks the TAOSCAT result (Fig. 3, right

panel). The EWSs run also ends with an accurate Niño-
3.4 value (December model average Niño-3.4 within

0.048CofOISST). If none of these five EWSs are applied

over the second half of 2017, model-simulated Niño-3.4
quickly returns to and stays in near-neutral conditions

(08C) over this period (Fig. 3, dashed curve). In this

forced-ocean context, the unexpected midyear reversal

in 2017 Niño-3.4 development was driven by a series of

EWSs distributed over the second half of 2017.

5. Simulating end-of-year Niño-3.4 conditions,
1992–2017

The 2017 results suggest that TAOxyf, or TAOSCAT in

the case in whichmany buoys aremissing, providesmore

FIG. 3. (left) The 58S–58Naveraged zonalwind stress anomaly over the equatorial Pacific during

2017 based on mooring plus scatterometer (TAOSCAT) winds. Dashed black curves circumscribe

the identified wind events in this period. (center) Zonal wind stress anomaly reconstructed by

applying five composite-average EWS zonal wind stress anomalies at the times and longitudes of

the observed events. (right) Niño-3.4 simulated by forcing the oceanmodel over the period shown

with these two zonal wind stress fields as well as climatological zonal wind stress (dashed line).
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accurate winds for simulating ENSO SSTA develop-

ment than the other options considered. But howwell do

these results apply to other years? To evaluate the ex-

tent to which the 2017-based ranking of simulation ac-

curacies hold over all years in the study period, a

corresponding series of yearlong experiments was run

using each wind stress dataset and beginning in 1992 in

the TAObox, TAOxyf, and NCEP-1 cases and 2000 in the

SCAT and TAOSCAT cases.

Comparison of simulated and observed end-of-year

(OND) Niño-3.4 SSTA conditions reveals that NCEP-1

RMSE (0.688C) is 60% as large as the magnitude of the

signal in question (observed Niño-3.4 OND standard

deviation is 1.18C). Forcing with SCAT or TAObox of-

fers substantial improvement over the NCEP-1 results,

with RMSE about one-half of the observed OND Niño-
3.4 standard deviation (Table 1). And further improve-

ment was achieved by filling the TAObox lost-buoy gaps

with either the scatterometer measurements (TAOSCAT;

2000–17 RMSE 5 0.438C), or by interpolation from ad-

jacent buoys (TAOxyf 1992–2017 RMSE5 0.448C, 2000–
17 RMSE 5 0.448C). Thus, the 2017 case example is

broadly consistent with results aggregated over the last

two decades: using TAOxyf or TAOSCAT consistently

offers improved simulation accuracy over the other

cases, especially NCEP-1.

Inspection of the TAOxyf simulated and observed

ONDNiño-3.4 values (Fig. 4; period 1992–2017) reveals

that when the model is incorrect, it tends to be because

the simulated amplitude is smaller, rather than larger

than observed. Nonetheless, some moderate-to-strong

ENSO events are reasonably well reproduced (e.g.,

2002–03, 2007–08, and 2015–16). Determining why some

moderate-to-large events are and are not (e.g., 2009–10)

adequately simulated is difficult with the information

available presently. Effects of omitted initial ocean

conditions, errors in the ocean model or the applied

surface heat fluxes, and errors in the winds are all pos-

sibilities. Without a more complete and accurate

knowledge of the wind stress than is currently available

it is difficult to say which is more likely: even in the best-

sampled years, TAO/TRITON data return has not

much exceeded 80%, leaving open the possibility that

impactful wind variability was not directly observed by

the moored-buoy array.

QuikSCAT wind measurements are not available af-

ter 2009, whereas ASCAT-A began in 2007 and remains

operational. The TAOxyf results span this full satellite

era (2000–17) and therefore offer a useful benchmark

for comparing these two scatterometers in terms of

simulation accuracy. Looking over the QuikSCAT pe-

riod, very little difference in accuracy is found between

the QuikSCAT and TAOxyf simulations: 2000–09 OND

Niño-3.4 RMSE is 0.488C in the TAOxyf case and 0.488C
in theQuikSCAT case. A larger discrepancy is revealed,

however, by comparing TAOxyf and ASCAT-A results

over the 2007–17 period. In this case, ONDNiño RMSE

based on TAOxyf remains about as accurate (within 2%)

as in the 2000–09 case (2007–17 TAOxyf RMSE 5
0.498C), but 2007–17 RMSE is 0.608C in the ASCAT-A

case. Evidently, ASCAT-A is not QuikSCAT’s or TAO/

TRITON’s equal in its ability to provide the basinwide

wind knowledge needed to accurately simulate observed

end-of-year Niño-3.4 conditions.

6. Predicting DJF Niño-3.4 SSTA from zonal wind
stress integrals

The results described above demonstrate that the zonal

wind stress applied each year over the equatorial Pacific

waveguide provides a dominant control on the develop-

ment of that year’s end-of-year Niño-3.4 SSTA condi-

tions. They also demonstrate that accurately simulating

that development in the free-forced-oceanmodel requires

accuratewind knowledge. Further, not all popular sources

of wind information are accurate enough to do this.

Skillful forecasts of ENSO anomaly state can provide a

useful basis for issuing seasonal weather forecasts over

the strongly ENSO-affected regions worldwide. Skill in

predicting Niño-3.4 is often used as a benchmark within

the larger-scale prediction process.We now examine how

TABLE 1. RMSE between observed and forced-ocean-model-

simulated OND-averaged Niño-3.4 conditions.

Wind stress

forcing data

OND Niño-3.4 RMSE

1992–2017 (8C)
OND Niño-3.4 RMSE

2000–17 (8C)

TAOSCAT — 0.43

TAOxyf 0.44 0.44

TAObox 0.49 0.50

SCAT — 0.51

NCEP-1 0.68 0.65

FIG. 4. OND-averaged Niño-3.4 as based on OISST (black

curve) and as simulated in the TAOxyf (green) forced-ocean gen-

eral circulation model experiment.
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well Niño-3.4 conditions in boreal winter (when ENSO

events tend to peak and have strongest statistical linkages

to extratropical seasonal weather anomalies) can be

predicted based on accurate knowledge of winds in the

preceding seasons.

To do this, the best-performing TAOSCAT zonal wind

stress is arithmetically integrated (no ocean modeling is

used in this section) on a yearly basis and over the bo-

real spring through fall, the seasons typically associated

with ENSO event onset and development (Larkin and

Harrison 2002). The target wintertime (DJF) Niño-3.4
averaging period will remain constant in this examina-

tion. Thus, stepping the integration end date back in

time from, say, 30 November to 31 October or 30 Sep-

tember, equates to increasing forecast lead. Different

wind-integral start dates, back to 1 March, are used to

explore the effects of changing the integration period

within the traditional ENSO onset and development

seasons.

The results of integrating equatorial Pacific zonal

wind stress anomaly from 1 May through 31 October of

each year for which TAOSCAT data are available (2000–

17) are illustrated in Fig. 5. In this case, there is 1 month

of lead time between the end of the integration period

and start of the target (DJF) period. The stress integral

correlates at the 0.94 level with observed DJF Niño-3.4
in this case. By the traditional method for estimating

variance explained on the basis of the squared correla-

tion coefficient, equatorial Pacific wind stress integrated

over the boreal spring–fall accounts for 89% of the ob-

served DJF Niño-3.4 variance.

Recalculating this integral again over the same

1 May–31 October period, but this time tabulating only

the times and longitudes identified by the wind event

detection algorithm (e.g., regions denoted by the black-

dashed curves in the left panel of Fig. 3) very nearly

reproduces the forecast skill achieved using the total

zonal wind stress field: Integrating just over the wind

events produces a correlation coefficient withDJFNiño-
3.4 (0.89) that is within 5% of the result based on in-

tegrating over the total TAOSCAT field. This, along with

the EWS-reconstruction results described in section 4,

strongly suggests that learning to accurately predict the

distribution of wind events in a given year, or at least

some salient aspects of their distribution (e.g., whether

or not events of one sign will be strongly favored over

the other) would offer direct improvement to our ability

to forecast wintertime ENSO SSTA conditions. The

forecast benefits associated with learning to better an-

ticipate westerly wind event activity have also pre-

viously been examined and found to be substantial by

Lopez and Kirtman (2014), who determined this based

on experiments with adding westerly wind events, whose

frequency is linked to equatorial Pacific SSTAs, to

coupled atmosphere–ocean general circulation model

experiments.

Further experimentation reveals that using a higher

wind stress anomaly threshold (specifically 0.0675Pa,

which is an increase of 50% over the original 0.045-Pa

criterion) for wind event detection results in a very

similar anomaly correlation as before (0.87) but a

change in the character of the predicted DJF Niño-3.4
time series (not shown) such that the larger ENSO event

years (e.g., 2010–11, 2011–12, and 2015–16) stand out

more from the other years. This change in character

causes an increase in the kurtosis of the predicted DJF

Niño-3.4 time series (period 2000–17) from 4.5 to 7.4.

This may imply that focusing on strong wind event be-

havior will help distinguish (prior to winter) the major

ENSO events that are most likely to influence extra-

tropical wintertime weather conditions. Further exami-

nation of this possibility is left to future work.

The left panel of Fig. 6 illustrates how well the wind

stress integral correlates with DJF Niño-3.4 at different

integral end dates and the same start date of 1 March

(effects of changing start dates examined below). The

wind stress–integral anomaly correlation increases from

just above 0.6 in the April-end case, to approximately

0.95 in the October-end and November-end cases (Fig. 5

left panel)

SSTA persistence (autocorrelation) has traditionally

been a useful point of comparison for other strategies for

forecasting Niño-3.4 (Barnston et al. 2012). The results of

performing such a comparison in the present context

are illustrated in the right panel of Fig. 5, wherein the

anomaly correlation values shown in the left panel are

replotted after the corresponding SSTA-persistence cor-

relations have been subtracted. In this case, the SSTA-

persistence anomaly correlations (withDJFNiño-3.4) are

FIG. 5. DJF-averaged Niño-3.4 (8C; black curve) and equatorial

Pacific zonal wind stress anomaly integrated from 1 May through

the end of October of each year (green curve). The wind integral is

plotted with equivalent standard deviation. The X-axis values

correspond to the year over which the stress was integrated and the

corresponding first month (December) of the DJF Niño-3.4 aver-

age. The blue curve shows the result of integrating just over the

times and longitudes of the identified easterly and westerly

wind events.
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calculated from 3-month averages of Niño-3.4 with the

same end date as the given wind stress integral. For ex-

ample, the 1August–31October-averaged (ASO) SSTA-

persistence anomaly correlation (;0.94) is subtracted

from the 31 October end date wind stress–integral result

(correlation;0.95) to determine which approach offered

a closer statistical link to DJF Niño-3.4 conditions. Evi-

dently, the wind-integral anomaly correlation fails to

reach the SSTA-persistence benchmark at the shortest

lead considered (November end), rises (barely) above

this benchmark when lead time is increased by 1 month,

and then beats the SSTA-autocorrelation benchmark

by increasingly wider margins as lead time is increased.

Specifically, springtime wind stress integrals produce

correlations with DJF Niño-3.4 that are 0.4–0.5 higher

than those based on SSTApersistence. This highlights the

potential long-lead (4–8months) predictive utility offered

from accurately monitoring and tabulating wind stress

variability over the equatorial Pacific.

The variation of the wind stress–integral anomaly

correlation with changes integration interval (i.e., using

different integral start dates) was examined. Results

reveal that all the integration periods considered that

extend through September or later produce correlations

with DJF Niño-3.4 that are.0.9 (Fig. 7, left panel). The

subset of late summer and early fall end date results are

slightly improved when the integration starts in June or

July rather than March or April, but otherwise the var-

iation with start date is generally smaller than the effects

of changing the end date (lead time).

Retrospective statistical forecasts of DJF Niño-3.4
were produced based on the set of spring through sum-

mer and fall wind stress integrals illustrated in Fig. 6

using linear regression with the target (observed DJF

Niño-3.4) and leave-one-out cross validation. The

RMSE of the cross-validated set of wind-based forecasts

of DJF Niño-3.4 (Fig. 7, right panel) varies with in-

tegration interval in a manner akin to that of the cor-

responding anomaly correlation; better skill is generally

(and perhaps unsurprisingly) seen the closer the integral

end date is moved to the start of the target DJF period.

The standard deviation of DJF Niño-3.4 over the 2000–

17 period is 1.18C. Dividing this standard deviation by a

given forecast’s RMSE offers a useful measure of that

forecast’s signal-to-noise ratio. Forecasts achieving

signal-to-noise ratios $2 are available as early as June,

in which case the 1 May–30 June integration period

performs best. Forecasts based on integrals ending in

August or later achieve this same level of accuracy

(signal-to-noise $ 2) regardless of the start date that

is chosen.

A benchmark set of predictions based on SSTA per-

sistence (i.e., time-lagged autocorrelation of 3-month-

averaged Niño-3.4) was generated using the same linear

regression and leave-one-out validation method as in

the wind stress–integral case. Comparison reveals that

the wind-integral method beats persistence method for

all lead times (end dates) considered, with the exception

of the shortest (the November end date). The utility of

using wind as predictor for DJF Niño-3.4 is thus con-

firmed at leads longer than 1 month relative to the

SSTA-persistence basis.

But how well does this wind-based Niño-3.4 fore-

casting approach work compared to the coupled ocean–

atmosphere model forecast systems in current popular

use? The NOAA CFSv2 (Saha et al. 2010) has been

found, in terms of Niño-3.4 forecast skill, to be among

the top, if not the top-performing model contributing to

the North American Multi-Model Ensemble (NMME;

Kirtman et al. 2014). RMSEs calculated from CFSv2

ensemble-averaged forecasts of DJFNiño-3.4 (2000–17)
are plotted as a function of lead time in Fig. 8, with the

FIG. 6. (left) Correlation between DJF Niño-3.4 and zonal stress integrals starting 1Mar of each

year and running through the month shown on the x axis. (right) Result of subtracting corre-

sponding 3-month-averaged Niño-3.4 time-lagged autocorrelations from the stress integral results

shown in the left-panel. The corresponding Niño-3.4 lagged autocorrelations in this case are cal-

culated using the target DJFNiño-3.4 average and the Niño-3.4 average over the three consecutive
months ending with the month shown on the x axis.
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corresponding wind stress–integral results overlaid for

comparison. At the two longest leads considered (April

andMay end dates) CFSv2 RMSE is lower (better) than

the wind stress–integral results. At these longer leads,

however, RMSEs are near the target standard deviation

indicating that very reliable long-lead forecasts are not

available by either approach. CFSv2 skill also beats the

wind approach result at the shortest (November end)

lead considered, however, the Niño-3.4 autocorrelation

method beats both wind and CFSv2 results in this case

(September–November Niño-3.4 autocorrelation-based

prediction of DJF Niño-3.4 yields RMSE 5 0.248C).
Over the summer and fall end date cases that offer

signal-to-noise ratios . 2, the wind-integral approach

achieves forecast skill that is either very near or im-

proves upon that achieved by CFSv2. In other words,

over the times of year when it was most useful to look at

the coupled model system forecasts of Niño-3.4, the

benefit of doing so could have been easily replicated, if

not improved upon, by looking at the winds made

available from the tropical Pacific mooring array—with

gaps caused by the (episodic) loss of an unusually large

number of buoys filled by the right kind of scatterometer

wind information.

7. Discussion and conclusions

The tropical Pacific moored-buoy array remains a

critical component of the Tropical Pacific Observing

System for its ability to provide direct, high-quality, real-

time observational knowledge of waveguide-wide wind

variability associated with the development of El Niño
and La Niña events. Most ENSO studies, however, do

not use the mooring winds directly for wind or wind

stress information, and instead rely on reanalysis data

products like NCEP-1. Of the reanalysis wind products

FIG. 7. (left) Correlation coefficient between DJF-averaged Niño-3.4 and integrated equatorial

Pacific wind stress anomaly. The end date (last day of month listed) is given on the x axis and start

date (first day of month) is on the y axis. (right) RMSE between observed DJF-averaged Niño-3.4
and Niño-3.4 values predicted by the wind stress–integral linear-regression model, with leave-one-

out cross validation applied.

FIG. 8. RMSE of wind stress integral–based (green curve; using TAOSCAT data) and CFSv2-

based forecasts of DJF Niño-3.4 SSTA. In the wind stress case, green shading shows the range

available from using different integration start dates (but the same end date) and the solid line

illustrates the average. The integration end dates and forecast dates are the last day of the months

listed on the x axis.
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most commonly used in recent ENSO studies (e.g.,

NCEP-1, NCEP–DOE Reanalysis-2, ERA-Interim; cf.

Chiodi and Harrison 2017a) only NCEP-1 is available in

near–real time, which motivates its direct consideration

herein.

Although NCEP-1 has proven remarkably useful for

understanding SSTA developments in other situations,

including those caused by subtropical air–sea interaction

(Chiodi and Harrison 2006, 2007), results from our

forced-ocean model experiments show it to be a de-

ficient source of wind stress knowledge for simulating

the observed development of equatorial Pacific SSTA

development in 2017 (signal-to-noise-ratio ;1). Syn-

thesizing a waveguide-wide wind stress field from the

buoy winds on their own offers a substantially improved

basis for understanding 2017 Niño-3.4 development

(signal-to-noise ratio 5 2–3).

These results are consistent with those based on other

years, such as were described over the 1992–2011 pe-

riod by Chiodi and Harrison (2017a), who showed that

the winds from the mooring array, when operating as

designed, provides basis for adequately simulating

(RMSE, 1/2 of the target standard deviation) observed

end-of-year Niño-3.4 conditions. Previous results also

showed that there are deficiencies in each of the re-

analysis product winds that prevent them from achieving

the simulation accuracy provided by the moorings.

Specifically, the NCEP reanalysis wind products tend to

contain less variability than observed across a wide

range of time scales. Corresponding NCEP-forced sim-

ulations tend to produce lower-than-observed Niño-3.4
variability. Over the 1992–2017 period considered

herein, the NCEP-1-forced simulations yielded OND

averaged Niño-3.4 values with a standard deviation of

0.68C, which is 0.58C less than the observation-based

OISST value of 1.18C. Also, the ERA-Interim product

was previously found to contain a spurious easterly

trend component over the equatorial Pacific that de-

graded its simulation accuracy. A similarly spurious

(relative to themooring winds) decadal-scale increase in

zonal wind speeds was also recently found over the

tropical Pacific in the satellite-wind-focused Cross-

Calibrated Multi-Platform, version 2, wind product

(CCMP2; Atlas et al. 2011; Chiodi et al. 2019), which

degrades its ability to force accurate simulations of

equatorial Pacific SSTA development in the model.

The efficacy of the mooring array is conditional on

there being not too many large gaps in it caused by the

loss of groups of adjacent buoys. Unfortunately, the

array suffered such significant losses in the 2012–14 pe-

riod (50% return relative to 1992–2011; Chiodi and

Harrison 2017b) and is currently severely depleted in the

far western Pacific. Filling such gaps with the analysis

products mentioned above only degrades the simula-

tions. Thus, what remained unclear from previous work

was whether the wind knowledge gaps caused by adja-

cent buoy dropouts could be filled with other sources of

wind information and our knowledge of ENSO-related

wind stress variability improved.

Nature provided a useful basis for examining the

prospects for this in 2017 by placing westerly and east-

erly wind events in some holes created in the mooring

array by adjacent buoy dropouts. When westerly wind

events occur over the Pacific Oceanic waveguide in

ENSO-neutral conditions like those seen in early 2017,

they drive SSTA warming over the oceanic waveguide

that averages a few tenths of a degree Celsius per event

(Vecchi and Harrison 2000) and persists for 2–3 months

following the end of the wind event (Kindle and

Phoebus 1995; Vecchi and Harrison 2000; Belamari

et al. 2003; Chiodi et al. 2014). Thus, the gap loss of early

2017 westerly wind events in the western part of the

basin contributed cool bias in the buoy-forced simula-

tion (TAObox) over the following seasons. That the buoy

losses in the western part of the basin were larger than

can be compensated for by the minimal redundancy

built into the array (loss of one buoy mitigated by ob-

servations provided by adjacent ones) explains why

cross-dropout interpolation does not offer much im-

provement over the first half of 2017 and, hence, why

TAOxyf and TAObox runs are similarly cool biased

throughmid-2017. Fortunately, in this case theASCAT-A

measurements providedmeasurements of the early 2017

westerly wind event zonal stress anomalies that, when

used to fill the dropout gaps in the TAOSCAT case, im-

prove upon the simulations forced by themooring winds

on their own over the summer of 2017.

The September EWS offers an interesting point of

comparison to the earlier westerly case. EWSs, on av-

erage, drive SSTA cooling over the waveguide akin to

the warming driven by westerly wind events. The loss of

several central Pacific buoys during easterly surges in

the fall explains why TAObox Niño-3.4 fails to cool over

fall and winter as rapidly as observed. In this case,

however, functioning buoys bracketed most of lost

central-Pacific buoys and therefore interpolation in the

TAOxyf case mitigates these losses. Thus, scatterometer

data offer little improvement in this case, and over

the second half of 2017 (July–December) TAOxyf and

TAOSCAT signal-to-noise ratios are both relatively good

(3.25) and end-of-year TAOxyf accuracy is approxi-

mately as good as TAOSCAT.

The results described herein from joint consideration of

moored-buoy and scatterometer winds are encouraging in

that they demonstrate a near-real-time basis for forced-

ocean simulation of observed Niño-3.4 development over
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the last 20 years that is more accurate than that pro-

duced from the reanalysis wind datasets tried previously

(NCEP-1, NCEP–DOE Reanalysis-2, ERA-Interim, and

CCMP2). This offers improved basis for studying the role

that near-surface wind and wind stress variability has

played in the development of El Niño and La Niña events
observed since 2000 for the joint-consideration case, and

since 1992 based on the moorings on their own. Closer

examination of the ocean processes responsible for the

SSTA changes observed to follow EWSs, based on ocean

model simulations forced with appropriate combinations

of moored-buoy and scatterometer wind information (as

described herein), may provide fertile ground for future

study (cf. Giese and Harrison 1991; DiNezio et al. 2009).

Although the currently available ASCAT-A winds

provide a useful backup for major moored-buoy losses,

they do not offer equal simulation accuracy to that

provided by the buoys. ASCAT-A simulation accuracy,

based on end-of-year Niño-3.4 RMSE, is 23% less than

that provided by the mooring winds on their own over

the subset of years (2007–17) for which both sources

have been available. This discrepancy occurs even

though the mooring array was severely depleted in

several of these years, including 2012–14, and is severely

depleted at present in the far western Pacific (only two

of the former 12 TRITON buoys are currently opera-

tional). These results suggest that reestablishing the

traditionally, but currently unavailable far western Pa-

cific moorings, should be a high priority for the current

Tropical Pacific Observing System 2020 (TPOS 2020;

Cravatte et al. 2016) effort. Even in the best-sampled

years, the data return from the moored-buoy array

was less than perfect (;80%). This, combined with the

evident loss of signal when buoys are replaced by

ASCAT-A type measurements, suggests that further

improvements could be obtained if the array were de-

veloped to be more resilient to lost buoys by increasing

buoy density in key regions or reengineering the buoys

and their instrumentation for improved longevity. The

recently released second TPOS 2020 report (Kessler

et al. 2019) recommends removing most of the moored

buoys on the 58 and 88 latitude lines in favor of extending
some (e.g., 4 or 5) of the north–south moored-buoy lines

to .108 latitude from the equator. Where the 58 and 88
moored buoys are removed, maintaining the continuity

of the observations provided by the remaining 28S–28N
moored buoys will be especially critical to our ability to

monitor ENSO-related wind stress variability over the

Pacific Ocean waveguide.

ENSO has gained notoriety outside of the scientific

literature due to its linkages with seasonal weather

anomalies in affected regions and seasons around Earth.

Linkages to North American weather anomalies are

strongest in winter. The ability to statistically forecast

boreal wintertime Niño-3.4 conditions based on arith-

metic wind stress integrals over the Pacific Ocean wave-

guide during preceding seasons was examined using a

straightforward, cross-validated, linear regression model

over the period for which wind measurements from both

Tropical Pacific mooring array and either the QuikSCAT

or ASCAT-A scatterometer instruments have been

available. Issued based on wind information available

from 1 to 6 months before the start of the target winter-

time season, retrospective Niño-3.4 forecasts based on

winds achieved skill that was as good as, or better than,

that offered by state-of-the-art coupled ocean–atmosphere

model forecast systems (e.g., CFSv2). At longer leads,

CFSv2 improves upon the wind results; however, RMSE

then approaches the target standard deviation. Thus, over

the times of year when ENSO SSTA forecasts are most

useful, the forecast skill available from coupled model

systems and statistical forecasts based on accurate knowl-

edge of the winds are about the same.

Xue et al. (2017) have recently shown that the quality

of the ocean reanalyses used to provide initial ocean

conditions in coupled seasonal forecast models is de-

pendent on there being sufficient high-quality ocean

profile data to constrain them; the recent loss of most of

the TAO/TRITON array over the 2012–14 was associ-

ated with a substantial increase in ocean reanalysis un-

certainty. In addition to ocean observational constraints,

ocean reanalyses are also influenced by an initial guess,

often from an ocean model forced with wind informa-

tion. Problems will occur in such a forecast system,

however, if the initial guess is inaccurate (because of

either the quality of wind forcing or deficiencies in the

ocean model) or there is a large initial shock that occurs

when the coupledmodel system is no longer constrained

by observations in forecast mode. This suggests that

successful efforts to reduce the model biases contribut-

ing to initial forecast-model shock while insuring that

the winds used to initialize the ocean model are consis-

tent with high-quality wind observations made across

the entire basin (as was the objective of the original

TAO/TRITON design) will improve upon our current

ability to predict ENSO anomaly state with coupled

atmosphere–ocean models. The results and methods

presented herein will be useful for evaluating the quality

of the winds used to initialize ocean reanalysis and

coupled seasonal forecast models.

The real-time knowledge of equatorial Pacific wind

variability provided by the tropical Pacific moored-buoy

array offers critical basis for monitoring equatorial Pa-

cific subseasonal wind events and simulating ENSO

SSTA development. The other sources of wind in-

formation evaluated in this capacity, including currently
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available satellite wind measurements and analyzed

wind products, are less accurate than the mooring winds

for these purposes. Reestablishing the mooring array in

the far western equatorial Pacific is key for the contin-

uation of our ability to monitor and improve our current

understanding of the processes controlling the evolution

of the anomaly state of the tropical Pacific.
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