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Abstract
Although warm El Niño-Southern Oscillation (ENSO) events, also called El Niño events, first caught the attention of the wider scientific community for their 
impacts on global seasonal weather anomalies, it is now widely recognized that cool-ENSO (La Niña) events, also drive socio-economically important anoma-
lies. The importance of better understanding the effects and processes controlling the predictability and impacts of La Niña events rivals the importance of im-
proving the understanding of these aspects of El Niño events. We show here that subseasonal events of easterly wind stress in the western and central tropical 
Pacific play an important role in the onset and evolution of La Niña events. These easterly wind surge events are identified using reanalysis wind stress fields, 
validated against buoy measurements. Analysis of the observed changes in sea surface temperature following them in the 1986-2012 period, as well as experi-
ments with easterly wind surge forcing of an ocean general circulation model, show that these easterly surges, whose frequency is a function of ENSO state, are 
able to affect La Niña events in a fashion analogous to their westerly wind event counterparts that have been shown to be important in the onset and evolution 
of El Niño events.
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Zonal Wind Spectra in the Western Tropical Pacific 
have a broad peak in the 3 to 60 day band
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Westerly Wind Events (WWEs) are a class of subseasonal 
wind events associated with this 3-60 day peak.  WWEs have 
been shown to be important to El Nino onset and development.
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Just as the weakening of the background easterly trade winds does
not occur smoothly during the transition to El Niño state, their 
strengthening during La Niña is punctuated by easterly events
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4

EWSs have smaller wind 
speed scales than WWEs, but 
comparable wind stress 
anomaly amplitudes. EWSs 
occur across the entire Eq. 
Pacific Ocean, with highest 
numbers near the Date Line.

Using a definition based on the WWE wind stress 
scales we find that easterly wind events, which we 
call Easterly Wind Surges (EWS) are a prominent 
component of Eq. Pac. zonal wind stress variability.

EWSs occur across the entire Eq. Pacific, but are 
largest in number around the Date Line.

6 A single EWS that occurs during 
ENSO-neutral conditions drives 
waveguide cooling of a few tenths 
of a degree C, just like single 
WWEs drive a few tenths of 
warming.

7 By our identification methods, EWSs occur at an average rate of 
~1/month during ENSO neutral conditions, and increase in frequency 
(roughly double) as the system transitions (cools) to La Niña.
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Ocean general circulation model experiments reveal that a 1/month series of 
EWSs will rapidly drive, then maintain a cooling of ~0.5C, averaged over the 
NINO3.4 region, in the absence of other forcing.

A series of EWSs that includes the ramp-up in frequency associated with cooler 
ENSO SSTAs is sufficient to drive a La Niña in the model.
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Summing the number of “clear sky” days seen from Mar to Dec each 
year leads to an OLR La Nina index that clearly identifies a subset of the 
years defined as La Nina based on NINO3.4 and the common definitions. 
We refer to these as the “OLR La Nina” years. In the 1974-2011 period 
there are 6 OLR La Nina years, and 6 others with La Nina status by 
SSTA, but not OLR (the “non-OLR La Nina years”).
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12 The OLR La Nina years have a usefully strong connection to seasonal weather anomalies over most of the regions con-
ventionally found to have La Nina-associated anomalies.  The non-OLR La Nina years have much weaker associations.  


