
Put SAS date functions to work for you
Many kinds of work require the calculation of elapsed anniver-

saries. The most obvious application is finding a person’s age

on a given date. Others might include finding the number of

years since any event has occurred, such as an index date for

medical treatment or the start of a magazine subscription.

However, because of the way the modern Gregorian cal-

endar is constructed, there is no straightforward arithmetic

method that produces a person’s age, stated according to

common usage — common usage meaning that a person’s

age should always be an integer that increases exactly on

a birthday. (Persons born on a February 29 are a special

case that will be addressed later.) It is often important to

compute an age that exactly conforms to this usage, for

example so that the data will be consistent with the age

written on a medical record.

Exact computation of ages and elapsed anniversaries must

take into account all rules governing lengths of months

and lengths of years. While the rich set of functions and

programming constructions available in the SAS DATA

step language allows many possible solutions, this article

presents a concise solution that relies on letting the

SAS date functions do all the work.

What doesn’t work
Often, SAS software users attempt to compute age using

an expression such as:

age = (somedate - birth) / 365.25;

where somedate and birth are SAS date variables (or

constants or expressions). Clearly this usually doesn’t return

an integer and therefore it is not stating an age according

to colloquial usage. That problem can be addressed by:

age = floor((somedate - birth) / 365.25);

Now we’re at least getting integers. In fact, for most dates

in a given year this statement does produce the correct

result. But in most years, age will increment on the wrong

day. To account for the Gregorian calendar’s idiosyncrasies,

some users make attempts such as:

age = floor((somedate - birth) / 365.2422);

However, extending the denominator to any number of

significant digits doesn’t help. Astronomers define several

kinds of “years” for various technical uses, but the Grego-

rian calendar uses a different concept of “year” in which

there are always either 365 or 366 days. No algorithm

of this kind perfectly models such an interval.

The Julian calendar, which was introduced in 46 BC, gave

every fourth year 366 days. Because this slowly causes a

discrepancy between the calendar and the seasons, Pope

Gregory XIII proclaimed the Gregorian calendar in 1582.

The new rule provided that every fourth year will have 366

days, except for years divisible by 100 but not 400. Thus

the year 2000 will be a leap year, but 2100 will not.

How SAS date functions can help
As we’ve seen, the Gregorian calendar, and hence an

integer count incremented on an anniversary date, cannot

be modeled with simple arithmetic. A completely accurate

t e c h n i c a l t i p s

A frequent need of SAS software users is to determine a person’s age, based on a given date and the person’s birthday. Although

no simple arithmetic expression can flawlessly return the age according to common usage, efficient code to do so can be written

using SAS software’s date functions. This article, by SAS software user William Kreuter, presents a one-line solution for this purpose.

Accurately calculating age
in only one line

38 S A S c o m m u n i c a t i o n s

approach requires coding all of the rules for which years are leap

years and all the rules for the number of days in each month.

This is where SAS software’s date functions help. Date functions

such as intck and intnx have the needed rules built in. Par-

ticularly, intck returns intervals that correctly account for

the idiosyncrasies of the Gregorian calendar. However, a

little tweaking is necessary to get exactly what we need.

Because intck alone won’t produce the number of years

between successive anniversaries given an arbitrary birth

date or starting date, a tweak is needed to find how old

the person is in months. Then, simple arithmetic will turn

this number into what we need — years that always incre-

ment on the anniversary date.

Again, consistent with common usage, we want the number

of months always to be an integer and we want it to increment

exactly on the same day each month (or on the first day fol-

lowing a month that is too short for the same day to occur).

Generally, the expression

intck(‘month’,birth,somedate)

returns the number of times the first day of a month is

passed between birth and somedate. An enhancement

is needed to alter this into the number of times the same

day of the starting month is passed. This simply consists of

subtracting one month if the day number of somedate is

earlier than the day number of birth. Although one could

program this concept using a separate if-then statement, it

can be calculated more concisely as a logical expression

returning a 0 or 1 value. The 0 or 1 is then subtracted from

the result of intck, as in the following example.

intck(‘month’,birth,somedate)
- (day(someday) < day(birth))

This now gives exactly the correct number of months for any

pair of dates.

A one-line solution
Converting months to years, we get:

age = floor
((intck(‘month’,birth,somedate)
- (day(someday) < day(birth))) / 12);

This can be conveniently set up as a macro:

%macro age(date,birth);
floor ((intck(‘month’,&birth,&date)

- (day(&date) < day(&birth))) / 12)
%mend age;

This is an example of how the macro is used in a

SAS DATA step:

age = %age(somedate,birth);

For example, the following lines:

age = %age(‘28aug1998’d,’24mar1955’d);
put age=;

will cause the following message to be placed on the log:

AGE=43

When this won’t work
There are only two instances where this approach might fail

to yield the expected result.

1. The birthday is February 29, and during non-leap years the

person celebrates the birthday on February 28. The solution

described here would treat the birthday during non-leap

years as March 1. In a random population this should affect

at most one out of 1,461 persons, or less than 0.07 percent

of the population. If desired, extra lines of code can accom-

modate this situation.

2. A person’s age is to be calculated at a time in history

when, in some particular country, the Gregorian calendar

was not in use. Beginning with the earliest date that is valid

in SAS software — January 1, 1582 — SAS software uses the

Gregorian calendar. That is the year that France, Italy, Lux-

embourg, Portugal, and Spain replaced the Julian calendar

with the Gregorian. (The Gregorian calendar was first

implemented so that the day after October 4, 1582 was

October 15, 1582. Nevertheless, SAS software recognizes

31 days in the month of October, 1582.) While the rest

of Roman Catholic Europe switched shortly after1582,

the United Kingdom and its colonies did not move to the

Gregorian calendar until 1752. Many other countries

switched even later, including the Soviet Union in 1918

and Greece in 1923. Some historic dates therefore might

be handled in a misleading manner — a problem which, it

should be noted, is true of any use of SAS dates in such

instances. Nevertheless, given likely scenarios, age will

be computed correctly in every country and era.

This tip was written by William Kreuter, a senior computer

specialist at the University of Washington in Seattle. He has

used SAS software in public health research since 1981,

and now specializes in manipulating large data sets for

the School of Public Health and the School of Medicine.

He can be reached at billyk@u.washington.edu.

If you have a SAS technical tip you’d like to share, send

it to us at editor@sas.com.

S A S c o m m u n i c a t i o n s 39

In the Windows environment, you can

take advantage of OLE automation,

which is the Windows mechanism for

manipulating an application's objects

from outside that application.

Since Release 6.11, SAS software has

been able to perform as an OLE

automation server on Windows 95

and Windows NT. This means that

other applications can programmati-

cally control the SAS System.

For instance, an Excel or Visual Basic

program can create a SAS session and

control it using the methods and prop-

erties that SAS software makes available.

SAS software provides a variety of

methods and properties to manage

code submission from the PROGRAM

EDITOR window and the execution of

commands. By default the SAS session

is hidden, so other applications can

access SAS functionality without using

the SAS GUI. The front-end tool can be

any application that can act as an OLE

automation controller (such as VB).

Release 6.12 online help provides

detailed documentation for using

SAS software as an OLE automation

server. From the menu bar, select

Help -> SAS companion -> What’s

New in Release 6.12 for Windows ->

Controlling the SAS System using

OLE Automation.

Can SAS software be embedded
in a Visual Basic application?
If so, how?

It depends on what you mean.

SAS functionality can be accessed

through a Visual Basic front end

(using techniques such as automation,

see above), but SAS objects, such as

SAS/EIS objects or SAS/AF widgets,

cannot be embedded in a Visual Basic

application. You can use automation

to script SAS software (control it

programmatically) from Visual Basic,

but SAS software’s visual objects

cannot be dropped into another

software application.

SAS/ACCESS Interface to ODBC provides access to any ODBC-compliant data-

base package for which you have an ODBC driver installed. This interface allows

users to retrieve information about existing Notes documents in a Lotus Notes

database, provided a Notes ODBC driver and data source are configured.

In addition, the NOTESBDB access method lets you add new Notes documents

to a Lotus Notes database. You can use this access method to automatically

output SAS data to Lotus Notes. You can build an interactive SAS/AF application

that populates a Notes database, or you can redirect the output of a batch

program to a Notes database.

These and other details about SAS software’s integration with

Lotus Notes are available from SAS Institute’s Web site at

www.sas.com//partners/enterprise/msinfo/whitepapers.htm

How does SAS software access data stored in Lotus Notes?

Questions & Answers

For organizations with SAS/AF applica-

tions that use CBT entries (for

example, help system information

tied to a SAS application), a utility is

now available for easily converting

CBT files to HTML for viewing with

Web browsers. Customers can use this

tool as a starting point for converting

information to HTML while preserving

the structure and linking information

in the original CBT files.

The CBT2HTML utility is an SCL appli-

cation with a SAS/AF interface. Users

supply the name of an input library

and catalog as well as a target direc-

tory for the output HTML files. The

utility will maintain the appearance

of the input files by preserving line

breaks and by writing every converted

frame to a separate file in the output

directory. Links are preserved as

HTML links, and the user can page

through entries by using the Forward

and Back buttons in the browser.

This utility is available through the

DEMOS & DOWNLOADS -> SAS/AF

section on the SAS Institute World

Wide Web site, www.sas.com.

Check this location for system require-

ments, download instructions, and

more detailed information on this

experimental utility.

DOWNLOAD IT!
N E W U T I L I T Y C O N V E R T S S A S / A F ® F I L E S T O H T M L

I have some questions about SAS software, OLE, and Visual Basic.
I have heard that you can use Visual Basic to write a front-end application
and use OLE to request SAS processing in the background. Is this correct?
If so, how is this done and where can I get more information?

40 S A S c o m m u n i c a t i o n s

